首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
The sumoylation of CCAAT/enhancer-binding proteins (C/EBPs) by small ubiquitin-related modifier-1 (SUMO-1) has been reported recently. In this study, we investigated the functional role of the sumoylation of C/EBPalpha in the differentiation of hepatocytes. The amount of sumoylated C/EBPalpha gradually decreased during the differentiation, which suggests that the sumoylation is important for the control of growth/differentiation especially in the fetal liver. To analyze the function of the sumoylation of C/EBPalpha in liver-specific gene expression, we studied its effects on the expression of the albumin gene. The C/EBPalpha-mediated transactivation of the albumin gene was reduced by sumoylation of C/EBPalpha in primary fetal hepatocytes. The enhancement of C/EBPalpha-mediated transactivation by BRG1, a core subunit of the SWI/SNF chromatin remodeling complex, was hampered by sumoylation in a luciferase reporter assay. In addition, we discovered that sumoylation of C/EBPalpha blocked its inhibitory effect on cell proliferation by leading to the disruption of a proliferation-inhibitory complex because of a failure of the sumoylated C/EBPalpha to interact with BRG1. BRG1 was recruited to the dihydrofolate reductase promoter in nonproliferating C33a cells but was not detected in proliferating cells where C/EBPalpha, BRG1, and SUMO-1 were overexpressed. This result suggests that BRG1 down-regulates the expression of the dihydrofolate reductase gene. These findings provide the insight that SUMO acts as a space regulator, which affects protein-protein interactions.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
Brown fat differentiation in mice is fully achieved in fetuses at term and entails the acquisition of not only adipogenic but also thermogenic and oxidative mitochondrial capacities. The present study of the mice homozygous for a deletion in the gene for CCAAT/enhancer-binding protein alpha (C/EBPalpha-null mice) demonstrates that C/EBPalpha is essential for all of these processes. Developing brown fat from C/EBPalpha-null mice showed a lack of uncoupling protein-1 expression, impaired adipogenesis, and reduced size and number of mitochondria per cell when compared with wild-type mice. Furthermore, immature mitochondrial morphology was found in brown fat, but not in liver or heart, from C/EBPalpha-null mice. Concordantly, expression of both nuclear and mitochondrial genome-encoded genes for mitochondrial proteins was reduced in C/EBPalpha-null brown fat, although expression of mitochondrial rRNA and mitochondrial DNA content were unaltered. Expression of nuclear respiratory factor-2, thyroid hormone nuclear receptors, and peroxisome proliferator-activated receptor gamma coactivator-1, was delayed in C/EBPalpha-null brown fat. Iodothyronine 5'-deiodinase activity and thyroid hormone content were also reduced in brown fat from C/EBPalpha-null mice, indicating for the first time a crucial role for C/EBPalpha in controlling thyroid status in developing brown fat, which may contribute to impaired mitochondrial biogenesis and cell differentiation. When survival of C/EBPalpha-null mice was achieved by transgenically expressing C/EBPalpha only in the liver, a substantial recovery in brown fat differentiation was found by day 7 of postnatal age, which is associated with a compensatory overexpression of C/EBPdelta and C/EBPbeta.  相似文献   

15.
16.
17.
18.
The acute phase response is an evolutionarily conserved response of the liver to inflammatory stimuli, which aids the body in host defense and homeostasis. We have previously reported that CCAAT enhancer-binding protein alpha (C/EBPalpha) is required for the induction of acute phase protein (APP) genes in newborn mice in response to lipopolysaccharide. In this paper, we describe a mechanism by which C/EBPalpha knock-out mice are unable to induce APP gene expression in response to inflammatory stimuli. We demonstrate that the lack of acute phase response in C/EBPalpha knock-out mice is because of a hepatocyte autonomous defect. C/EBPalpha knock-out hepatocytes do not activate STAT3 in response to recombinant interleukin (IL)-6, indicating a defect in the IL-6 pathway. C/EBPalpha knock-out hepatocytes also do not show activation of other IL-6 receptor (IL-6R)-mediated Janus kinase substrates, gp130, SHP-2, and Tyk2. Further examination of the IL-6 pathway demonstrated that C/EBPalpha knock-out hepatocytes have decreased IL-6Ralpha protein levels caused, in part, by reduced protein stability. However, other components of the IL-6 pathway are intact, as demonstrated by rescue of STAT3 activation and APP gene induction with recombinant-soluble IL-6R linked to IL-6 cytokine (Hyper-IL-6) or with another gp130 signaling cytokine, Oncostatin M. In conclusion, C/EBPalpha is required for the proper regulation of IL-6Ralpha protein in hepatocytes resulting in a lack of acute phase protein gene induction in newborn C/EBPalpha null mice in response to lipopolysaccharide or cytokines.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号