首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prey may select suboptimal habitat to alleviate predation risk. Algal blooms and turbidity are potentially harmful to prey in aquatic environments, but can provide refugia against predation, given that predators avoid such conditions. Using a flow-through aquarium, we experimentally studied the habitat choice of the three-spined stickleback (Gasterosteus aculeatus L.) provided with toxic and non-toxic bloom-forming cyanobacteria and green flagellate-induced turbidity in the presence and absence of a chemical predator signal from a perch (Perca fluviatilis L.). We investigated whether sticklebacks separate between different algal strains and between turbid and clear water, and whether they are able to use algal toxicity and turbidity as shelter against predators. Sticklebacks preferred the toxic over the non-toxic Nodularia spumigena (Mertens) habitat in the presence of a predator signal, whereas no differences in times spent in the two habitats were detected when the predator signal was absent. There was a tendency for sticklebacks to prefer clear over turbid water in the absence of a predator signal, but no differences were found when the predator signal was present. Our results suggest that the three-spined stickleback is not fully adapted to the cyanobacterial blooms and turbidity caused by the recent eutrophication of the Baltic Sea. However, the predator-induced shifts in habitat choice are also consistent with the hypothesis that sticklebacks use algal toxicity and turbidity as shelters against predation, since these factors are likely to have only minor fitness consequences for sticklebacks.  相似文献   

2.
We consider a predator–prey model system for spatially distributed species over patches. Each predator species has a unique preferred patch (shelter and reproduction site) and travel for chasing prey. Its individuals are split into resident from the preferred patch and travelers. Further there is at most one resident predator species per patch. Depending on the availability of local anthropized resources not related to local prey on the preferred patch, one distinguishes between well-fed and starving predators. We assume prey species do not disperse at the predator scale.In this study we are interested in the number of persistent stationary states for the resulting ordinary differential equations model system. There exists at most one persistent predator–prey stationary state when there is exactly one starving resident predators per patch provided all functional responses to predation are Lotka–Volterra like or when a single starving resident predators is available. Else multiple persistent predator–prey stationary state are likely to exist. A specific emphasis is put on toy-model systems with 2 or 3 patches. Slow–fast dynamical methodology is also used for locally asymptotically stable purposes.Numerical experiments suggest that several scalings may govern the dynamics at stabilization.  相似文献   

3.
《Harmful algae》2009,8(1):119-128
Karlodinium veneficum is a common member of the phytoplankton in coastal ecosystems, usually present at relatively low cell abundance (102 to 103 mL−1), but capable of forming blooms of 104 to 105 cells mL−1 under appropriate conditions. We present evidence consistent with the hypothesis that prey abundance, particularly the abundance of nano-planktonic cryptophytes, is a key factor driving the formation of toxic K. veneficum blooms in eutrophic environments. K. veneficum is known to increase growth rate 2- to 3-fold in culture through mixotrophic nutrition, but the role of feeding in bloom formation has not been directly examined. We find that toxic K. veneficum blooms are correlated with cryptophytes abundance changes. We find a wide range of mixotrophic feeding capabilities (0–4 prey per predator per day) among genetically distinct strains of K. veneficum when fed a common prey. Finally, we find that toxic K. veneficum is capable of feeding on a wide range of cryptophyte species varying in size (31–421 μm3 per cell) and phylogenetic affinity, although ingestion rates of different prey vary significantly. While abiotic conditions (e.g. nutrients and advection) are an important aspect of K. veneficum bloom formation in eutrophic environments, our results reinforce the need for a broader view of conditions leading to toxic K. veneficum blooms including biotic factors such as prey availability.  相似文献   

4.
Microscopic turbulent motions of water have been shown to influence the dynamics of microscopic species living in that habitat. The number, stability, and excitability of stationary states in a predator–prey model of plankton species can therefore change when the strength of turbulent motions varies. In a spatial system these microscopic turbulent motions are naturally of different strength and form a heterogeneous physical environment. Spatially neighboring plankton communities with different physical conditions can impact each other due to diffusive coupling. We show that local variations in the physical conditions can influence the global system in form of propagating pulses of high population densities. For this we consider three different local predator–prey models with different local responses to variations in the physical environment. The degree of spatial heterogeneity can, depending on the model, promote or reduce the number of propagating pulses, which can be interpreted as patchy plankton distributions and recurrent blooms.  相似文献   

5.
Most empirical and theoretical papers on prey–predator interactions are for animals with long-range detection, animals that can detect and react to predators long before these touch the prey. Heavy-bodied and chemically defended harvestmen (Arachnida, Opiliones) are an exception to this general pattern and rely on contact to detect arthropod predators. We examined the interactions between the Brazilian wandering spider Ctenus ornatus with harvestmen (Mischonyx cuspidatus) or control prey (Gryllus sp. and M. cuspidatus immature, both with soft integuments). Considering a prey–predator system in which fleeing from or reacting to a predator at a distance is not possible, we predicted both a high survival value of near-range defense mechanisms and that mortality would be higher in the absence of such defense mechanisms. We also expected the predator to behave differently when interacting with harvestmen or with a control prey without such defense mechanisms. Our results from laboratory experiments partially matched our predictions: First of all, histological sections showed that the integument of adult harvestmen is thicker than that of immature harvestmen and that of crickets. Adult harvestmen were less preyed upon than the control prey; the heavy armature increases the survival rate but the secretions from the scent glands do not. The predator did behave differently when attacking harvestmen compared to crickets. Despite the large size difference between predator and harvestmen, the protection provided by the armature allowed some of the harvestmen to survive encounters without pre-contact detection, thus greatly reducing the reliance on long-range detection to survive encounters with predators. Harvestmen call for theoretical and empirical work on prey–predator interactions that take into account the possibility that prey may not detect the predator before contact is established.  相似文献   

6.
Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.  相似文献   

7.
The increased persistence of predator–prey systems when interactions are distributed through the space has been acknowledged by both empirical and theoretical studies. One salient feature of predator–prey interactions in heterogeneous space, for example, is the existence of cycles with reduced amplitude when compared with a homogeneous landscape. Although the role of spatial interactions in shaping the dynamics of predator–prey systems has been extensively studied, still very few works have focused on the effects of habitat loss and fragmentation on these systems. In this work, we study the population dynamics of a predator–prey system in a single finite habitat with flux at the boundaries. Species movement and growth are described through a reaction–diffusion model with Rosenzweig–MacArthur type local interactions. Conforming with the existing literature, we find that the reduction of habitat size, or increasing of species movement rates equivalently, has the potential to decrease the amplitude of oscillations and even bring the system to a steady coexistence equilibrium above a threshold. We observe, however, situations in which this trend is reversed. This occurs when species movement rates and response at patch boundaries interact to induce non-trivial patterns of species distributions. These distributions are characterized by anti-correlation between predator and prey, creating then spatial refugia for prey. Our results highlight the role of population loss through habitat boundaries in determining the dynamics of predator–prey interactions.  相似文献   

8.
In the plankton, heterotrophic microbes encounter and ingest phytoplankton prey, which effectively removes >50% of daily phytoplankton production in the ocean and influences global primary production and biochemical cycling rates. Factors such as size, shape, nutritional value, and presence of chemical deterrents are known to affect predation pressure. Effects of movement behaviors of either predator or prey on predation pressure, and particularly fleeing behaviors in phytoplankton are thus far unknown. Here, we quantified individual 3D movements, population distributions, and survival rates of the toxic phytoplankton species, Heterosigma akashiwo in response to a ciliate predator and predator-derived cues. We observed predator-induced defense behaviors previously unknown for phytoplankton. Modulation of individual phytoplankton movements during and after predator exposure resulted in an effective separation of predator and prey species. The strongest avoidance behaviors were observed when H. akashiwo co-occurred with an actively grazing predator. Predator-induced changes in phytoplankton movements resulted in a reduction in encounter rate and a 3-fold increase in net algal population growth rate. A spatially explicit population model predicted rapid phytoplankton bloom formation only when fleeing behaviors were incorporated. These model predictions reflected field observations of rapid H. akashiwo harmful algal bloom (HAB) formation in the coastal ocean. Our results document a novel behavior in phytoplankton that can significantly reduce predation pressure and suggests a new mechanism for HAB formation. Phytoplankton behaviors that minimize predatory losses, maximize resource acquisition, and alter community composition and distribution patterns could have major implications for our understanding and predictive capacity of marine primary production and biochemical cycling rates.  相似文献   

9.
10.
We extend two-species models of individual aggregation or clustering to two-dimensional spatial domains, allowing for more realistic movement of the populations compared with one spatial dimension. We assume that the domain is bounded and that there is no flux into or out of the domain. The motion of the species is along fitness gradients which allow the species to seek out a resource. In the case of competition, species which exploit the resource alone will disperse while avoiding one another. In the case where one of the species is a predator or generalist predator which exploits the other species, that species will tend to move toward the prey species, while the prey will tend to avoid the predator. We focus on three primary types of interspecies interactions: competition, generalist predator–prey, and predator–prey. We discuss the existence and stability of uniform steady states. While transient behaviors including clustering and colony formation occur, our stability results and numerical evidence lead us to believe that the long-time behavior of these models is dominated by spatially homogeneous steady states when the spatial domain is convex. Motivated by this, we investigate heterogeneous resources and hazards and demonstrate how the advective dispersal of species in these environments leads to asymptotic steady states that retain spatial aggregation or clustering in regions of resource abundance and away from hazards or regions or resource scarcity.  相似文献   

11.
Theory predicts that predator–prey interactions can generate reciprocal selection pressures on species pairs, which can result in local adaptation, yet the presence and pattern of local adaptation is poorly studied in vertebrate predator–prey systems. Here, we used a reciprocal common garden (laboratory) experimental design involving comparisons between local and foreign populations to determine if local adaptation was present between a generalist predator—the pigmy rattlesnake (Sistrurus miliarius)—and a co-occurring prey—the squirrel treefrog (Hyla squirella). We conducted toxicity trials using snake venom from two populations separated by 340 km tested on prey from sympatric and allopatric populations, resulting in data from four venom origin–frog origin combinations. We assessed venom effectiveness using two measures (frog mortality at 24 h and time to frog death) and then used regression analyses to look for a signal of local adaptation with either measure. We found evidence for local adaptation for one measure (time to death), but not the other (frog mortality). We argue that in this system, the time to death of a prey item is a more ecologically relevant measure of venom effectiveness than is frog mortality at 24 h. Our results document an example of local adaptation between two interacting vertebrates using a whole-organism assay and a local versus foreign criteria and provide evidence that population-level variation in snake venom is adaptive.  相似文献   

12.
We studied the effect of cyanobacteria on foraging and refuge use in small fish. We measured pike larval feeding in the presence of cyanobacteria by counting leftover prey. Our results showed that feeding by pike larvae on zooplankton prey decreased significantly in the presence of non-toxic cyanobacteria. The behaviour can be due to lowered vision caused by turbidity or clogging of the gills. Further, we tested whether the three-spined stickleback use toxic cyanobacteria as a refuge against predators in a choice experiment. The choice experiment was performed in a Y-maze fluviarum, where the fish could select between two different environments. Our results support the refuge use hypothesis because the three-spined stickleback clearly preferred toxic cyanobacteria to the chemical predator signal. To conclude, cyanobacteria decrease feeding rates in fish larvae, but may function as important refuge for e.g. sticklebacks, during predation pressure in pelagic algal blooms.  相似文献   

13.
Species have phenological variation among local habitats that are located at relatively small spatial scales. However, less studies have tested how this spatial variability in phenology can mediate intra-/inter-specific interactions. When predators track phenological variation of prey among local habitats, survival of prey within a local habitat strongly influenced by phenological synchrony with their conspecifics in adjacent habitats. Theory predicts that phenological synchrony among local habitats increases prey survival in local habitat within spatially structured environments because the predators have to make a habitat choice for foraging. Consequently, total survival of prey at regional scale should be higher. By using a spatially explicit field experiment, we tested above hypothesis using a prey–predator interaction between tadpole (Rhacophorus arboreus) and newt (Cynops pyrrhogaster). We established enclosures (≈regional scale) consisting of two tanks (≈local habitat scale) with different degree of prey phenological synchrony. We found that phenological synchrony of prey between tanks within each enclosure decreased the mean residence time of the predator in each tank, which resulted in higher survival of prey at a local habitat scale, supporting the theoretical prediction. Furthermore, individual-level variation in predator residence time explained the between-tank variation in prey survival in enclosures with phenological synchrony, implying that movement patterns of the predator can mediate variation in local population dynamics of their prey. However, total survival at each enclosure was not higher under phenological synchrony. These results suggest the importance of relative timing of prey phenology, not absolute timing, among local habitats in determining prey–predator interactions.  相似文献   

14.
Predator foraging facilitation may strongly influence the dynamics of a predator–prey system. This behavioral pattern is well-observed in real life interactions, but less is known about its possible impacts on the predator–prey dynamics. In this paper we analyze a modified Rosenzweig–MacArthur model, where a predator-dependent family of functions describing predator foraging facilitation is introduced into the Holling type II functional response. As the general assumption of foraging facilitation is that higher predator densities give rise to an increased foraging efficiency, we model predator facilitation with an increasing encounter rate function. Using the tools of bifurcation analysis we describe all the nonlinear phenomena that occur in the system provoked by foraging facilitation, these include the fold, Hopf, transcritial, homoclinic and Bogdanov–Takens bifurcation. We show that foraging facilitation can stabilize the coexistence in the predator–prey system for specific rates, but in most of the cases it can have fatal consequences for the predators themselves.  相似文献   

15.
Many species and clones of Daphnia inhabit ecosystems with permanent algal blooms, and they can develop tolerance to cyanobacterial toxins. In the current study, we examined the spatial differences in the response of Daphnia longispina to the toxic Microcystis aeruginosa in a lowland eutrophic dam reservoir between June (before blooms) and September (during blooms). The reservoir showed a distinct spatial pattern in cyanobacteria abundance resulting from the wind direction: the station closest to the dam was characterised by persistently high Microcystis biomass, whereas the upstream stations had a significantly lower biomass of Microcystis. Microcystin concentrations were closely correlated with the cyanobacteria abundance (r = 0.93). The density of daphniids did not differ among the stations. The main objective of this study was to investigate how the distribution of toxic Microcystis blooms affects the antioxidant system of Daphnia. We examined catalase (CAT) activity, the level of the low molecular weight antioxidant glutathione (GSH), glutathione S-transferase (GST) activity and oxidative stress parameters, such as lipid peroxidation (LPO). We found that the higher the abundance (and toxicity) of the cyanobacteria, the lower the values of the antioxidant parameters. The CAT activity and LPO level were always significantly lower at the station with the highest M. aeruginosa biomass, which indicated the low oxidative stress of D. longispina at the site with the potentially high toxic thread. However, the low concentration of GSH and the highest activity of GST indicated the occurrence of detoxification processes at this site. These results demonstrate that daphniids that have coexisted with a high biomass of toxic cyanobacteria have effective mechanisms that protect them against the toxic effects of microcystins. We also conclude that Daphnia''s resistance capacity to Microcystis toxins may differ within an ecosystem, depending on the bloom''s spatial distribution.  相似文献   

16.
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the stability of equilibrium states in the local patches in the absence of migration determines the stability of spatially homogeneous equilibrium states of the whole metapopulation when migration is added. Here, we present classes of examples in which deviations from the usual assumptions lead to different predictions. In particular, heterogeneity in local habitat quality in combination with long-range dispersal can induce a stable equilibrium for the metapopulation dynamics, even when within-patch processes would produce very complex behaviour in each patch in the absence of migration. Thus, when spatially homogeneous equilibria become unstable, the system can often shift to a different, spatially inhomogeneous steady state. This new global equilibrium is characterized by a standing spatial wave of population abundances. Such standing spatial waves can also be observed in metapopulations consisting of identical habitat patches, i.e. without heterogeneity in patch quality, provided that dispersal is density dependent. Spatial pattern formation after destabilization of spatially homogeneous equilibrium states is well known in reaction–diffusion systems and has been observed in various ecological models. However, these models typically require the presence of at least two species, e.g. a predator and a prey. Our results imply that stabilization through spatial pattern formation can also occur in single-species models. However, the opposite effect of destabilization can also occur: if dispersal is short range, and if there is heterogeneity in patch quality, then the metapopulation dynamics can be chaotic despite the patches having stable equilibrium dynamics when isolated. We conclude that more general metapopulation models than those commonly studied are necessary to fully understand how spatial structure can affect spatial and temporal variation in population abundance.  相似文献   

17.
Mercury (Hg) sequestration by phytoplankton results in intracellular concentrations that are multiple times greater than ambient water levels, and therefore the consumption of contaminated phytoplankton by herbivorous zooplankton, such as Daphnia, and their inefficient excretion of methylmercury (MeHg) can mediate the transfer to higher trophic levels. Employing a modified version of a metabolomics-inspired Daphnia ecophysiological model, the present study introduces two prey species to a simple Lotka-Volterra predator-prey system in order to shed light on the implications for the integrity of zooplankton assemblages, when experiencing multiple prey items of different toxicity and nutritional quality. We also examine the capacity of adaptive strategies of the predator (homeostatic rigidity, energetic investments to cope with toxicity) to shape predator-prey interactions. Our analysis suggests that the degree of nutritional quality of the prey items is a predominant driver of the predator-prey relationships, shifting from prey- to predator-dominated food webs with increasing nutritional quality. Increasing prey nutritional content leads to the emergence of oscillatory behaviour, which can be further modulated by the growth rates and degree of toxicity of different prey species. Severe exposure to contamination could lead to a decline of the predator biomass with faster growth rates of low nutritional quality prey, even though the increase of its MeHg somatic quota is only modest. In stark contrast, when a prey assemblage of superior nutritional quality prevails in an environment of elevated toxicity, faster prey growth rates are conducive to higher predator biomass levels, albeit its distinctly higher internal contaminant content. Owing to the heightened somatic growth dilution, the ingestion of carbon and nutritional metabolites is significantly higher relative to the MeHg intake rates, which leads to faster net growth of the predator and thus reinforces the benefits brought about by the nutritional value of their diet. Our results suggest that the homeostatic rigidity of the predator can assist in coping with toxic exposure. With a tighter range between the minimum and optimum somatic quotas, the predator population appears to be more resilient and its decline begins at higher levels of MeHg exposure. The predator-prey system displays a greater propensity for oscillatory behaviour, with their amplitude being driven by the interplay between the degree of saturation for nutritionally beneficial metabolites, and the energetic investments allotted to cope with toxicity and/or the excretion of excess metabolic by-products. We conclude by highlighting the prospect of our modelling work to guide new directions of research, to test a multitude of hypotheses pertaining to various ecophysiological facets of predator-prey systems, and extend its use to other contexts, such as the implications of toxin-producing algae for the predator physiology.  相似文献   

18.
To assess the effects of fluctuating prey availability on predator population dynamics and grazing impact on phytoplankton, we measured growth and grazing rates of three heterotrophic dinoflagellate species—Oxyrrhis marina, Gyrodinium dominans and Gyrodinium spirale—before and after depriving them of phytoplankton prey. All three dinoflagellate species survived long periods (> 10 d) without algal prey, coincident with decreases in predator abundance and cell size. After 1–3 wks, starvation led to a 17–57% decrease in predator cell volume and some cells became deformed and transparent. When re‐exposed to phytoplankton prey, heterotrophs ingested prey within minutes and increased cell volumes by 4–17%. At an equivalent prey concentration, continuously fed predators had ~2‐fold higher specific growth rates (0.18 to 0.55 d?1) than after starvation (?0.16 to 0.25 d?1). Maximum specific predator growth rates would be achievable only after a time lag of at least 3 d. A delay in predator growth poststarvation delays predator‐induced phytoplankton mortality when prey re‐emerges at the onset of a bloom event or in patchy prey distributions. These altered predator‐prey population dynamics have implications for the formation of phytoplankton blooms, trophic transfer rates, and potential export of carbon.  相似文献   

19.
Understanding the determinants and consequences of predation effort, success and prey responses is important since these factors affect the fitness of predators and prey. When predators are also invasive species, the impacts on prey can be particularly far-reaching with ultimate ecosystem-level consequences. However, predators are typically viewed as behaviourally fixed within this interaction and it is unclear how variation in predator social dynamics affects predator–prey interactions. Using the invasive eastern mosquitofish Gambusia holbrooki and a native glass shrimp Paratya australiensis in Australia, we investigated how varying levels of social conflict within predator groups influences predator–prey interactions. By experimentally manipulating group stability of G. holbrooki, we show that rates of social conflict were lower in groups with large size differences, but that routine metabolic rates were higher in groups with large size differences. Predation effort and success did not vary depending on group stability, but in stable groups predation effort by aggressive dominants was greater than subordinates. The anti-predator responses of prey to the stability of predator groups were mixed. While more prey utilized shelters when exposed to stable compared to unstable groups of predators, a greater proportion were sedentary when predator groups were unstable. Overall, this study demonstrates predator group stability is modulated by differences in body size and can influence prey responses. Further, it reveals a hidden metabolic cost of living in stable groups despite reduced overt social conflict. For invasive species management, it is therefore important to consider the behavioural and physiological plasticity of the invasive predators, whose complex social interactions and metabolic demands can modulate patterns of predator–prey interactions.  相似文献   

20.
A mathematical model for spatiotemporal dynamics of prey–predator system was studied by means of linear analysis and numerical simulations. The model is a system of PDEs of taxis–diffusion–reaction type, accounting for the ability of predators to detect the locations of higher prey density, which is formalized as indirect prey–taxis, according to hypothesis that the taxis stimulus is a substance being continuously emitted by the prey, diffusing in space and decaying with constant rate in time (e.g. odour, pheromone, exometabolit). The local interactions of the prey and predators are described by the classical Rosenzweig – MacArthur system, which is modified in order to take into account the Allee effect in the predator population. The boundary conditions determine the absence of fluxes of population densities and stimulus concentration through the habitat boundaries. The obtained results suggest that the prey–taxis activity of the predator can destabilize both the stationary and periodic spatially-homogeneous regimes of the species coexistence, causing emergence of various heterogeneous patterns. In particular, it is demonstrated that formation of local dense aggregations induced by prey–taxis allows the predators to overcome the Allee effect in its population growth, avoiding the extinction that occurs in the model in the absence of spatial effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号