共查询到20条相似文献,搜索用时 125 毫秒
1.
Dagmara Sirová Jakub Borovec Barbora Černá Eliška Rejmánková Lubomír Adamec Jaroslav Vrba 《Aquatic Botany》2009
We examined trap fluid of three aquatic carnivorous species of Utricularia (Lentibulariaceae) to assess the role of microbial community within their traps in plant nutrient acquisition. In the context of increasing trap age, we characterized microbial community composition using phospholipid fatty acid (PLFA) analysis and microscopy. Nutrient content in various fractions of the trap fluid was analyzed and the abundance of free-suspended bacteria estimated. The activities of extracellular phosphatase in the trap fluid were determined using fluorometry and the contribution of the microbial community to phosphatase production assessed by epifluorescence microscopy. The trap microbial community seems to be largely derived from Utricularia associated periphyton. PLFA analysis revealed that trap fluid contained all components of a complex microbial food web with bacteria forming more than 58% of the viable microbial biomass in the trap. Trap age seems to be the key factor in determining the patterns of microbial community development as well as enzyme production. The amount of nutrients increases with increasing trap age, and the total amounts of C, N, and P accumulated within traps during their lifetime are relatively large—of the order of 100 mg L−1 for C and N, and between 0.2 and 0.6 mg L−1 for P. A significant part of the nutrient pool is present in the dissolved form. Trap fluid stoichiometry (molar N:P ratios about 100) as well as the presence of nutrient limited microbial cells (molar N:P ratios 25–61) indicates the importance of phosphorus rather than nitrogen for the nutrition of Utricularia. Our findings support the hypothesis that mutualism, apart from the predator–prey interaction, is an important association in aquatic Utricularia traps and that the trap-associated microbial community may be of benefit to the rootless aquatic Utricularia species facing problems with P acquisition due to the loss of roots in their evolution. 相似文献
2.
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes. 相似文献
3.
Effects of sieving, drying and rewetting upon soil bacterial community structure and respiration rates 总被引:3,自引:0,他引:3
Bruce C. Thomson Nick J. Ostle Andrew S. Whiteley 《Journal of microbiological methods》2010,83(1):69-73
Soil microcosm studies often require some form of soil homogenisation, such as sieving, to provide a representative sample. Frequently, soils are also homogenised following drying and are then rewetted, yet little research has been done to understand how these methods impact upon microbial communities. Here we compared the molecular diversity and functional responses of intact cores from a Scottish grassland soil with homogenised samples prepared by drying, sieving and rewetting or freshly sieving wet soils. Results showed that there was no significant difference in total soil CO2-C efflux between the freshly sieved and intact core treatments, however, respiration was significantly higher in the dried and rewetted microcosms. Molecular fingerprinting (T-RFLP) of bacterial communities at two different time-points showed that both homogenisation methods significantly altered bacterial community structure with the largest differences being observed after drying and rewetting. Assessments of responsive taxa in each treatment showed that intact cores were dominated by Acidobacterial peaks whereas an increased relative abundance of Alphaproteobacterial terminal restriction fragments were apparent in both homogenised treatments. However, the shift in community structure was not as large in the freshly sieved soil. Our findings suggest that if soil homogenisation must be performed, then fresh sieving of wet soil is preferable to drying and rewetting in approximating the bacterial diversity and functioning of intact cores. 相似文献
4.
Touchette BW Burkholder JM 《Journal of experimental marine biology and ecology》2000,250(1-2):169-205
The small but diverse group of angiosperms known as seagrasses form submersed meadow communities that are among the most productive on earth. Seagrasses are frequently light-limited and, despite access to carbon-rich seawaters, they may also sustain periodic internal carbon limitation. They have been regarded as C3 plants, but many species appear to be C3–C4 intermediates and/or have various carbon-concentrating mechanisms to aid the Rubisco enzyme in carbon acquisition. Photorespiration can occur as a C loss process that may protect photosynthetic electron transport during periods of low CO2 availability and high light intensity. Seagrasses can also become photoinhibited in high light (generally>1000 μE m−2 s−1) as a protective mechanism that allows excessive light energy to be dissipated as heat. Many photosynthesis–irradiance curves have been developed to assess light levels needed for seagrass growth. However, most available data (e.g. compensation irradiance Ic) do not account for belowground tissue respiration and, thus, are of limited use in assessing the whole-plant carbon balance across light gradients. Caution is recommended in use of Ik (saturating irradiance for photosynthesis), since seagrass photosynthesis commonly increases under higher light intensities than Ik; and in estimating seagrass productivity from Hsat (duration of daily light period when light equals or exceeds Ik) which varies considerably among species and sites, and which fails to account for light-limited photosynthesis at light levels less than Ik. The dominant storage carbohydrate in seagrasses is sucrose (primarily stored in rhizomes), which generally forms more than 90% of the total soluble carbohydrate pool. Seagrasses with high Ic levels (suggesting lower efficiency in C acquisition) have relatively low levels of leaf carbohydrates. Sucrose-P synthase (SPS, involved in sucrose synthesis) activity increases with leaf age, consistent with leaf maturation from carbon sink to source. Unlike terrestrial plants, SPS apparently is not light-activated, and is positively influenced by increasing temperature and salinity. This response may indicate an osmotic adjustment in marine angiosperms, analogous to increased SPS activity as a cryoprotectant response in terrestrial non-halophytic plants. Sucrose synthase (SS, involved in sucrose metabolism and degradation in sink tissues) of both above- and belowground tissues decreases with tissue age. In belowground tissues, SS activity increases under low oxygen availability and with increasing temperatures, likely indicating increased metabolic carbohydrate demand. Respiration in seagrasses is primarily influenced by temperature and, in belowground tissues, by oxygen availability. Aboveground tissues (involved in C assimilation and other energy-costly processes) generally have higher respiration rates than belowground (mostly storage) tissues. Respiration rates increase with increasing temperature (in excess of 40°C) and increasing water-column nitrate enrichment (Z. marina), which may help to supply the energy and carbon needed to assimilate and reduce nitrate. Seagrasses translocate oxygen from photosynthesizing leaves to belowground tissues for aerobic respiration. During darkness or extended periods of low light, belowground tissues can sustain extended anerobiosis. Documented alternate fermentation pathways have yielded high alanine, a metabolic ‘strategy’ that would depress production of the more toxic product ethanol, while conserving carbon skeletons and assimilated nitrogen. In comparison to the wealth of information available for terrestrial plants, little is known about the physiological ecology of seagrasses in carbon acquisition and metabolism. Many aspects of their carbon metabolism — controls by interactive environmental factors; and the role of carbon metabolism in salt tolerance, growth under resource-limited conditions, and survival through periods of dormancy — remain to be resolved as directions in future research. Such research will strengthen the understanding needed to improve management and protection of these environmentally important marine angiosperms. 相似文献
5.
Zhi-Ping Mei 《Journal of theoretical biology》2009,259(3):582-588
Communities of marine phytoplankton consist of cells of many different sizes. The size-structure of these communities often varies predictably with environmental conditions in aquatic systems. It has been hypothesized that physiological differences in nutrient and light requirements and acquisition efficiencies contribute to commonly observed correlations between phytoplankton community size structure and resource availability. Using physiological models we assess how light and nutrient availability can alter the relative growth rates of phytoplankton species of different cell sizes. Our models predict a change in the size dependence of growth rate depending on the severity of limitation by light and nutrient availability. Under conditions of growth-saturated resource supply, phytoplankton growth rate (mol C ) scales with cell volume with a size-scaling exponent of ; light limitation reduces the size-scaling exponent to approximately , and nutrient limitation decreases the exponent to as a consequence of the size-scaling of resource acquisition. Exponents intermediate between and occur under intermediate availability of light and nutrients and depend on the size-scaling of pigment photoacclimation and the size range examined. 相似文献
6.
Sediment nutrient accumulation and nutrient availability in two tidal freshwater marshes along the Mattaponi River, Virginia, USA 总被引:3,自引:0,他引:3
Sediment deposition is the main mechanism of nutrient delivery to tidal freshwater marshes (TFMs). We quantified sediment nutrient accumulation in TFMs upstream and downstream of a proposed water withdrawal project on the Mattaponi River, Virginia. Our goal was to assess nutrient availability by comparing relative rates of carbon (C), nitrogen (N), and phosphorus (P) accumulated in sediments with the C, N, and P stoichiometries of surface soils and above ground plant tissues. Surface soil nutrient contents (0.60–0.92% N and 0.09–0.13% P) were low but within reported ranges for TFMs in the eastern US. In both marshes, soil nutrient pools and C, N, and P stoichiometries were closely associated with sedimentation patterns. Differences between marshes were more striking than spatial variations within marshes: both C, N, and P accumulation during summer, and annual P accumulation rates (0.16 and 0.04 g P m–2 year–1, respectively) in sediments were significantly higher at the downstream than at the upstream marsh. Nitrogen:P ratios <14 in above ground biomass, surface soils, and sediments suggest that N limits primary production in these marshes, but experimental additions of N and/or P did not significantly increase above ground productivity in either marsh. Lower soil N:P ratios are consistent with higher rates of sediment P accumulation at the downstream site, perhaps due to its greater proximity to the estuarine turbidity maximum. 相似文献
7.
Alisha Lea Pagel Brown Frank P. Day Bruce A. Hungate Bert G. Drake C. Ross Hinkle 《Plant and Soil》2007,292(1-2):219-232
Elevated CO2 can increase fine root biomass but responses of fine roots to exposure to increased CO2 over many years are infrequently reported. We investigated the effect of elevated CO2 on root biomass and N and P pools of a scrub-oak ecosystem on Merritt Island in Florida, USA, after 7 years of CO2 treatment. Roots were removed from 1-m deep soil cores in 10-cm increments, sorted into different categories (<0.25 mm, 0.25–1 mm,
1–2 mm, 2 mm to 1 cm, >1 cm, dead roots, and organic matter), weighed, and analyzed for N, P and C concentrations. With the
exception of surface roots <0.25 mm diameter, there was no effect of elevated CO2 on root biomass. There was little effect on C, N, or P concentration or content with the exception of dead roots, and <0.25 mm
and 1–2 mm diameter live roots at the surface. Thus, fine root mass and element content appear to be relatively insensitive
to elevated CO2. In the top 10 cm of soil, biomass of roots with a diameter of <0.25 mm was depressed by elevated CO2. Elevated CO2 tended to decrease the mass and N content of dead roots compared to ambient CO2. A decreased N concentration of roots <0.25 mm and 1–2 mm in diameter under elevated CO2 may indicate reduced N supply in the elevated CO2 treatment. Our study indicated that elevated CO2 does not increase fine root biomass or the pool of C in fine roots. In fact, elevated CO2 tends to reduce biomass and C content of the most responsive root fraction (<0.25 mm roots), a finding that may have more
general implications for understanding C input into the soil at higher atmospheric CO2 concentrations. 相似文献
8.
D. M. Alongi 《Oecologia》1994,98(3-4):320-327
Benthic oxygen consumption and primary production were measured using the bell jar technique in deltaic and fringing mangrove forests of tropical northeastern Australia. In a deltaic forest, rates of sediment respiration ranged from 197 to 1645 mol O2 m–2 h–1 (mean=836), but did not vary significantly with season or intertidal zone. Gross primary production varied among intertidal zones and seasons, ranging from –281 to 1413 mol O2 m–2 h–1 (mean=258). Upon tidal exposure, rates of gross primary production increased, but respiration rates did not change significantly. In a fringing mangrove forest, benthic respiration and gross primary production exhibited strong seasonality. In both forests, rates of oxygen consumption and production were low compared to salt marshes, but equivalent to rates in other mangrove forests. The production:respiration (P/R) ratio varied greatly over space and time (range:–0.61 to 1.76), but most values were «1 with a mean of 0.15, indicating net heterotrophy. On a bare creek bank and a sandflat, rates of gross primary production and P/R ratios were generally higher than in the adjacent mangroves. Low microalgal standing stocks, low light intensity under the canopy, and differences in gross primary production between mangroves and tidal flats, and with tidal status, indicate that benthic microalgae are light-limited and a minor contributor to primary productivity in these tropical mangrove forests. 相似文献
9.
Review of nitrogen and phosphorus metabolism in seagrasses 总被引:21,自引:0,他引:21
Touchette BW Burkholder JM 《Journal of experimental marine biology and ecology》2000,250(1-2):133-167
10.
Janis C. Kurtz 《Journal of experimental marine biology and ecology》2003,291(2):199-218
A shading experiment was conducted over a growing season to measure the effects of light reduction on Vallisneria americana in Perdido Bay on the Florida-Alabama border and to determine the response of heterotrophic bacteria in the rhizosphere. Plants subjected to 92% light reduction showed the most pronounced effects in chlorophyll a concentration, above- and below-ground biomass, and leaf dimensions. These results further suggested that the V. americana life cycle, as exhibited in temperate waters, was impaired. Heterotrophic bacteria were enumerated and identified (i) from the roots and sediments of fully illuminated plants and from unvegetated sediments at three intervals and (ii) from the roots of plants that have been subjected to 92% light reduction for 3 months. Up to two orders of magnitude greater numbers of bacteria were enumerated from root samples than sediment samples on a dry weight basis. Bacteria enumerated from the roots of plants subjected to light reduction (1.3±1.1×108 CFU g−1) were significantly higher than numbers of bacteria enumerated from the roots of fully illuminated plants (4.8±1.8×107 g−1 in the summer) or sediment samples (1.4±0.03×106 g−1). This suggests the roots of seagrasses stressed by light reduction provided more nutrients for bacterial growth. Higher percentages of Gram-negative bacteria were isolated from roots (up to 85% in the fall) than sediments (0-15%). Examination of isolates for traits characteristic of rhizosphere bacteria (siderophore production, formation of the phytohormone indole-3-acetic acid, and antifungal activity) did not show a clear distinction between root-associated and sediment isolates. Taxonomic identifications of root-associated bacteria based on MIDI analysis of fatty acid methyl esters were consistent with bacteria known to be associated with other plants or found at oxic-anoxic interfaces. In addition, the bacterial identifications showed most species were associated with only roots or only sediments. These results support studies suggesting seagrass rhizospheres harbor distinct bacterial communities. 相似文献
11.
The relationship between changes in soil nutrient characteristics and fynbos community boundaries was investigated near Cape Agulhas, South Africa. Soil characteristics relating to total nutrient content (pH, total N and total P, organic carbon, and various cations) were assessed at sites along three transects crossing the boundaries between five plant communities. Dynamics of available N and P in soils of three communities were studied in the field over one year, using ion-exchange resins. There was a wide range in the degree of change in soil nutrient content across different community boundaries. The characteristics that varied most were pH, total N, Ca and total P. Differences in available nutrients among soils indicated that the communities in this landscape were associated with a mosaic of N and P availability. It is proposed that spatial variation in soil nutrient availability rather than total soil nutrient contents may be important in explaining landscape-level species distributions and community composition in nutrient-poor mediterranean-climate ecosystems. 相似文献
12.
Rising atmospheric CO2 concentrations have highlighted the importance of being able to understand and predict C fluxes in plant-soil systems. We
investigated the responses of the two fluxes contributing to below-ground efflux of plant root-dependent CO2, root respiration and rhizomicrobial respiration of root exudates. Wheat (Triticum aestivum L., var. Consort) plants were grown in hydroponics at 20°C, pulse-labelled with 14CO2 and subjected to two regimes of temperature and light (12 h photoperiod or darkness at either 15°C or 25°C), to alter plant
C supply and demand. Root respiration was increased by temperature with a Q
10 of 1.6. Root exudation was, in itself, unaltered by temperature, however, it was reduced when C supply to the roots was reduced
and demand for C for respiration was increased by elevated temperature. The rate of exudation responded much more rapidly
to the restriction of C input than did respiration and was approximately four times more sensitive to the decline in C supply
than respiration. Although temporal responses of exudation and respiration were treatment dependent, at the end of the experimental
period (2 days) the relative proportion of C lost by the two processes was conserved despite differences in the magnitude
of total root C loss. Approximately 77% of total C and 67% of 14C lost from roots was accounted for by root respiration. The ratio of exudate specific activity to CO2 specific activity converged to a common value for all treatments of 2, suggesting that exudates and respired CO2were not composed of C of the same age. The results suggest that the contributions of root and rhizomicrobial respiration
to root-dependent below-ground respiration are conserved and highlight the dangers in estimating short-term respiration and
exudation only from measurements of labelled C. The differences in responses over time and in the age of C lost may ultimately
prove useful in improving estimates of root and rhizomicrobial respiration. 相似文献
13.
Hermanni Kaartokallio Jaana Tuomainen Harri Kuosa Jorma Kuparinen Pertti J. Martikainen Kristina Servomaa 《Polar Biology》2008,31(7):783-793
Coastal fast ice and underlying water of the northern Baltic Sea were sampled throughout the entire ice winter from January
to late March in 2002 to study the succession of bacterial biomass, secondary production and community structure. Temperature
gradient gel electrophoresis (TGGE) and sequencing of TGGE fragments were applied in the community structure analysis. Chlorophyll-a and composition of autotrophic and heterotrophic assemblages were also examined. Overall succession of ice organism assemblages
consisted of a low-productive stage, the main algal bloom, and a heterotrophic post-bloom situation, as typical for the study
area. The most important groups of organisms in ice in terms of biomass were dinoflagellates, plasticidic flagellates, rotifers
and ciliates. Ice bacteria showed a specific succession not directly dependent on the overall succession events of ice organisms.
Sequenced 16S rDNA fragments were mainly affiliated to α-, β-, and γ-proteobacterial phyla and Cytophaga–Flavobacterium–Bacteroides-group, and related to sequences from cold environments, also from the Baltic Sea. Temporal clustering of the TGGE fingerprints
was stronger than spatial, although lower ice and underlying water communities always clustered together, pointing to the
importance of ice maturity and ice–water interactions in shaping the bacterial communities. 相似文献
14.
Corno G 《FEMS microbiology ecology》2006,58(3):354-363
Predation and competition are two main factors that determine the size and composition of aquatic bacterial populations. Using a simplified bacterial community, composed of three strains characterized by different responses to predation, a short-term laboratory experiment was performed to evaluate adaptations and relative success in communities with experimentally controlled levels of predation and nutrient availability. A strain with a short generation time (Pseudomonas putida), one with high plasticity in cell morphology (Flectobacillus sp. GC5), and one that develops microcolonies (Pseudomonas sp. CM10), were selected. The voracious flagellate Ochromonas sp. was chosen as a predator. To describe adaptations against grazing and starvation, abundance, biomass and relative heterogeneity of bacteria were measured. On the whole, the strains in the predation-free cultures exhibited unicellular growth, and P. putida represented the largest group. The presence of Ochromonas strongly reduced bacterial abundance, but not always the total biomass. The activity of grazers changed the morphological composition of the bacterial communities. Under grazing pressure the relative composition of the community depended on the substrate availability. In the presence of predators, P. putida abundance declined in both high and low nutrient treatments, and Pseudomonas CM10 developed colonies. Flectobacillus was only numerically codominant in the nutrient-rich environments. 相似文献
15.
16.
Vegetation throughout the southwestern United States has changed from perennial grassland to woody shrubland over the past century. Previous studies on the development of islands of fertility focused primarily on only the most limiting, plant-essential element, soil nitrogen (N). The research presented here addressed the question of whether other plant-essential elements, namely phosphorus (P) and potassium (K), showed similar concentration gradients under the desert shrub Larrea tridentata, creosotebush. It also examined whether the spatial distribution of N, P, and K differed from that of essential, but non-limiting nutrients, namely calcium (Ca), magnesium (Mg), and sulfur (S), and non-essential elements, namely sodium (Na), chloride (Cl), and fluoride (F). Within adjacent grassland and shrubland plots, surface soils were collected under and between vegetation and analyzed for a suite of soil nutrients. Soil nutrient distribution followed a uniform pattern that mirrored the spatial homogeneity of bunchgrasses in the grassland, but followed a patchy distribution that mirrored the spatial heterogeneity of individual shrubs in the shrubland. The main differences were that in the grassland, all elements were uniformly distributed, but in the shrubland the plant-essential elements, nitrogen, phosphorus, and potassium, were concentrated under the shrub canopy, and the non-limiting and non-essential elements were either concentrated in the intershrub spaces or were equally concentrated under shrubs and in the interspaces. Our results show how vegetation shifts from grassland to shrubland contribute to long-term, widespread change in the structure and function of desert ecosystems. 相似文献
17.
Spatial and seasonal variation in greenhouse gas and nutrient dynamics and their interactions in the sediments of a boreal eutrophic lake 总被引:1,自引:0,他引:1
Anu Liikanen Jari T. Huttunen Timo Murtoniemi Heikki Tanskanen Tero Väisänen Jouko Silvola Jukka Alm Pertti J. Martikainen 《Biogeochemistry》2003,65(1):83-103
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO
2
–
+ NO
3
–
, NH
4
+
and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH
4
+
and P, increased the flux of N2O and NO
2
–
+ NO
3
–
, but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH
4
+
and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4
+ and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH
4
+
release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets. 相似文献
18.
C. Labry 《Journal of experimental marine biology and ecology》2005,318(2):213-225
Previous studies conducted on the continental shelf in the Southeast Bay of Biscay influenced by Gironde waters (one of the two largest rivers on the French Atlantic coast) showed the occurrence of late winter phytoplankton blooms and phosphorus limitation of algal growth thereafter. In this context, the importance of dissolved organic phosphorus (DOP) for both algae and bacteria was investigated in 1998 and 1999 in terms of stocks and fluxes. Within the mixed layer, although phosphate decreased until exhaustion from winter to spring, DOP remained high and phosphate monoesters made up between 11 to 65% of this pool. Total alkaline phosphatase activity (APA, Vmax) rose gradually from winter (2-8 nM h−1) to late spring (100-400 nM h−1), which was mainly due to an increase in specific phytoplankton (from 0.02 to 3.0 nmol μgC−1 h−1) and bacterial APA (from 0.04 to 4.0 nmol μgC−1 h−1), a strategy to compensate for the lack of phosphate. At each season, both communities had equal competitive abilities to exploit DOP but, taking into account biomass, the phytoplankton community activity always dominated (57-63% of total APA) that of bacterial community (9-11%). The dissolved APA represented a significant contribution. In situ regulation of phytoplanktonic APA by phosphate (induction or inversely repression of enzyme synthesis) was confirmed by simultaneously conducted phosphate-enrichment bioassays. Such changes recorded at a time scale of a few days could partly explain the seasonal response of phytoplankton communities to phosphate depletion. 相似文献
19.
The consequence of the complexity of the metabolic network on the amount of control strength of adenine nucleotide translocator was investigated with isolated rat liver mitochondria. Two experimental systems were compared: (i) mitochondria in the presence of yeast hexokinase (hexokinase system) and (ii) the same system plus additional pyruvate kinase (pyruvate kinase system). In both systems the control strength was analysed for the adenine nucleotide translocator by inhibitor titration studies with carboxyatractyloside and for the hexokinase or pyruvate kinase by changing their relative activities. Experimental results were compared with computer simulation of these systems and that of a third one, where the extramitochondrial ATP / ADP ratio was held constant by perifusion (perifusion system). The results demonstrate quite different flux-dependent control strength of the translocator in the three systems. In the hexokinase system the control strength of the translocator on mitochondrial respiration was zero up to respiration rates of about 60 nmol O2/mg protein per min. For higher rates, the control strength increased until the maximum value (0.45) was reached in the fully active state. Here, the same value was also found in the pyruvate kinase system. In all other states of respiration the translocator exerts a higher control strength in the pyruvate kinase system than in the hexokinase system. This different behaviour was attributed to the various changes in the adenine nucleotide pattern caused by partial inhibition of the translocator in the hexokinase and pyruvate kinase system. The data clearly show that the sharing of control strength depends not only on the respiration rate but also on the complexity of the metabolic system. 相似文献
20.
The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of
the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes
(representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 × 2 factorial design, high vs. low
quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest
under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had
resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition,
significant genotype (clone) × (food) environment interactions were observed, with a different predominant species/clone found
under low food quality versus high food quality (no significant differences were detected for the two food quantities). A
clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to
predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic
diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the
overall maintenance of genetic diversity in natural populations.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献