首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of exotic species and the extirpation of native species that occurred during the past two centuries have strongly modified the structure of most plant and animal assemblages across the globe. Such a biotic change is particularly marked in isolated environments such as islands or isolated lakes. Most studies reported drastic changes between before and after human disturbances, but the dynamics of change in assemblage structure through the invasion and extirpation processes are rarely reported. Here we measured the aquatic ecosystem degradation through exotic species introduction and native species extirpation experienced by Lake Erhai (China) during the last 50 years using structural, functional and taxonomic distinctness biodiversity indices. Structural diversity (species richness) did not varied monotonically along the temporal gradient, due to an opposite trend between exotic species increase and a concomitant decline of native species richness. Functional diversity displayed unclear ascending trends driven by the introduction of exotic species having distinct functional traits than natives. Taxonomic distinctness indices exhibited an increase of the average taxonomic distinctness (Δ+), but a decrease of the variation in taxonomic distinctness (Λ+) through time. Structural, functional and distinctness indices providing complementary information on ecosystem degradation, we here proposed a new multifaceted degradation index integrating these three facets of biodiversity. Such an index provided an accurate representation of the faunistic changes experienced by Lake Erhai and might constitute a comprehensive way to measure ecosystem degradation through exotic fish species introductions and native fish species extirpations.  相似文献   

2.
陈思淇  张玉钧 《生物多样性》2021,29(10):1411-92
乡村景观是一种人文和自然共生的复合生态系统, 为生物多样性的维持提供了支持。目前, 中国传统乡村地区生物多样性的维持正面临着农业集约化、人工林树种单一化、非农业用地急剧扩张及生态传承机制解体等复杂多样的威胁, 亟待展开深入研究。本文在总结乡村景观生物多样性相关概念及特征的基础上, 通过文献分析概括了国际乡村景观生物多样性的热点研究方向, 包括农业集约化下的生物多样性管理、区域尺度乡村景观与生物多样性的协同关系、局地尺度不同乡村景观类型的物种多样性及乡村景观中的生物文化多样性, 进一步梳理了国内在相关研究方向上的主要进展并指出研究不足。在此基础上提出未来研究展望, 包括突出生物文化多样性特征、加强多时空尺度分析、深化动态维持机制研究、推进生物多样性研究在乡村生态景观规划中的全过程应用等建议。  相似文献   

3.
Mallee‐heath and mallee communities occur in a mosaic across large areas of south‐western Australia, in topographically subdued and fire‐prone landscapes. Consequently, it could be expected that these communities would have historically experienced similar fire regimes, and would respond similarly to variation in aspects of the fire regime. We studied the response of mallee‐heath and mallee to time since the last fire, measuring species density, species–area relationships, diversity indices and vegetation structure. Floristic responses to time since fire accorded with the initial floristic composition model of plant succession, with declining species density and Shannon diversity with age in mallee‐heath. Mallee‐heath exhibited structural senescence when > approximately 45–55 years since fire, with increasing standing dead vegetation, bare ground and stagnating or declining size in sprouting Eucalyptus spp. Mallee showed no such evidence of senescence, and indeed continued to increase in stature beyond the mean fire interval but without the compositional change required to provide support for the relay floristic model of plant succession. These results indicate that mallee‐heath is a fire maintained community and as such is reliant upon periodic burning to maintain diversity and vigour. Mallee, in contrast, is modified but not maintained by fire (at least over the period of time since fire examined) and hence is less susceptible to fire interval effects. Indeed, structural attributes likely to be significant for fauna habitat and carbon sequestration continue to develop in mallee unburnt for 55 years or more. Different responses to time since fire will create challenges for management, particularly in fragmented landscapes where fire potentially interacts with other threatening processes.  相似文献   

4.
The concept that vegetation structure (and faunal habitat) develops predictably with time since fire has been central to understanding the relationship between fire and fauna. However, because plants regenerate after fire in different ways (e.g. resprouting from above‐ground stems vs. underground lignotubers), use of simple categories based on time since fire might not adequately represent post‐fire habitat development in all ecosystems. We tested the hypothesis that the post‐fire development of faunal habitat structure differs between ecosystems, depending on fire regeneration traits of the dominant canopy trees. We measured 12 habitat components at sites in foothill forests (n = 38), heathy woodlands (n = 38) and mallee woodlands (n = 98) in Victoria, Australia, and used generalised additive models to predict changes in each variable with time since fire. A greater percentage of faunal habitat variables responded significantly to time since fire in mallee woodlands, where fires typically are stand‐replacing, than in foothill forests and heathy woodlands, where canopy tree stems generally persist through fire. In the ecosystem with the highest proportion of epicormic resprouters (foothill forests), only ground cover and understorey vegetation responded significantly to time since fire, compared with all but one variable in the ecosystem dominated by basal resprouters (mallee woodlands). These differences between ecosystems in the post‐fire development of key habitat components suggest there may also be fundamental differences in the role of fire in shaping the distribution of fauna. If so, this challenges the way in which many fire‐prone ecosystems currently are categorised and managed, especially the level of dependence on time since fire and other temporal surrogates such as age‐classes and successional states. Where time since fire is a poor surrogate for habitat structural development, additional complexity (e.g. fire severity, topography and prior land‐use history) could better capture processes that determine faunal occurrence in fire‐prone ecosystems.  相似文献   

5.
Increasing anthropic pressure is making forest fires more frequent in the Mediterranean Basin and therefore affecting the response of native flora and fauna. Two large fires occurred in summer, 1994, in the Southeastern Iberian Peninsula. Aleppo pine, the main tree species, regenerated naturally after the fire. In this study we are interested in strategies for maximizing Aleppo pine tree recovery and conservation of its ecosystem. We performed thinning and pruning in the pine tree stands 5 and 10 years after the fire and took measurements on structural patterns and plant diversity using several indices. In addition, we measured macro-lichen and faunal diversity indirectly. Results show significant differences between treated-burned plots and untreated-unburned plots. The plots thinned 10 years after the fire and the unburned plots (mature stands) showed a regular, non-aggregated distribution and a low diameter differentiation. Also, these plots showed similar plant diversity values. The silvicultural treatments did not significantly affect the fauna and lichen index values. The high intensity of thinning and late pruning applied to young Aleppo pine stands improved the structural pattern and plant diversity.  相似文献   

6.
Agricultural development has contributed to the global erosion of biodiversity. The farmed matrix in agricultural landscapes can and must be important for the conservation of biodiversity and provision of ecosystem services, but this assumes that the matrix has biodiversity value. We investigate the contribution of pastures and crops to ant diversity on mixed farms in eastern Australia. Remnant native woodlands, pastures of native grasses, sown pastures of exotic species, and crops were sampled for epigaeic ants on 3 farms using pitfall trapping. Ants were sorted to species and assigned to functional groups. Ant species richness and functionality followed consistent patterns across the three farms. Significant differences in assemblage composition were found between the major habitat types, and in species richness between woodland and non-woodland habitats (native and sown pastures, and crops), which did not contribute appreciably to farm-level biodiversity: 1–10% of species were found only in the farmed matrix. Insect conservation in agricultural landscapes is important for the provision of ecosystem services, including pest control and the maintenance of soil condition. As the farmed matrix makes only a modest contribution to farm-scale biodiversity, appropriate management of the unfarmed parts of the landscape is critical and habitat restoration may be warranted where the level of native vegetation is low. Maintaining a mix of land uses within the production matrix will also be a necessary bet-hedging strategy in a world with changing climates, commodities, community expectations and farming practices.  相似文献   

7.
To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.  相似文献   

8.
Question: Can fire be used to maintain Yellow pine (Pinus subgenus Diploxylon) stands disturbed by periodic outbreaks of southern pine beetle? Location: Southern Appalachian Mountains, USA. Methods: We used LANDIS to model vegetation disturbance and succession on four grids representative of xeric landscapes in the southern Appalachians. Forest dynamics of each landscape were simulated under three disturbance scenarios: southern pine beetle, fire, and southern pine beetle and fire, as well as a no disturbance scenario. We compared trends in the abundance of pine and hardwood functional types as well as individual species. Results: Yellow pine abundance and open woodland conditions were best maintained by a combination of fire and southern pine beetle disturbance on both low elevation sites as well as mid‐elevation ridges & peaks. On mid‐elevation SE‐W facing slopes, pine woodlands were best maintained by fire alone. Conclusions: Our simulations suggest that fire can help maintain open pine woodlands in stands affected by southern pine beetle outbreaks.  相似文献   

9.
Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.  相似文献   

10.
New knowledge about the responses of species to fire is needed to plan for biodiversity conservation in the face of changing fire regimes. However, the knowledge that is acquired may be influenced by the sampling method and the taxonomic resolution of a study. To investigate these potential sampling biases, we examined invertebrate responses to time since fire in mallee woodlands of southern Australia. Using a large‐scale replicated study system, we sampled over 60 000 invertebrates with large pitfall traps, wet pitfall traps and sweep nets, and undertook analyses at morphospecies and order level. Large pitfalls and sweep nets detected several strong fire effects, whereas wet pitfall traps detected few effects. Invertebrate abundance in sweep nets was highest shortly after fire because of grasshopper outbreaks. Several additional morphospecies showed strong preferences for different stages in the post‐fire succession. In contrast with morphospecies effects, analyses at order level either failed to detect fire effects or were driven by the most abundant species. For fire research to produce credible results with the potential to guide management, it must use a range of sampling techniques and undertake analyses at (morpho)species level. Homogeneous fire management, such as fire suppression in fragmented landscapes or widespread frequent burning for asset protection, is likely to cause declines in fire‐affected invertebrates.  相似文献   

11.
As the area of plantation forest expands worldwide and natural, unmanaged forests decline there is much interest in the potential for planted forests to provide habitat for biodiversity. In regions where little semi-natural woodland remains, the biodiversity supported by forest plantations, typically non-native conifers, may be particularly important. Few studies provide detailed comparisons between the species diversity of native woodlands which are being depleted and non-native plantation forests, which are now expanding, based on data collected from multiple taxa in the same study sites. Here we compare the species diversity and community composition of plants, invertebrates and birds in Sitka spruce- (Picea sitchensis-) dominated and Norway spruce- (Picea abies-) dominated plantations, which have expanded significantly in recent decades in the study area in Ireland, with that of oak- and ash-dominated semi-natural woodlands in the same area. The results show that species richness in spruce plantations can be as high as semi-natural woodlands, but that the two forest types support different assemblages of species. In areas where non-native conifer plantations are the principle forest type, their role in the provision of habitat for biodiversity conservation should not be overlooked. Appropriate management should target the introduction of semi-natural woodland characteristics, and on the extension of existing semi-natural woodlands to maintain and enhance forest species diversity. Our data show that although some relatively easily surveyed groups, such as vascular plants and birds, were congruent with many of the other taxa when looking across all study sites, the similarities in response were not strong enough to warrant use of these taxa as surrogates of the others. In order to capture a wide range of biotic variation, assessments of forest biodiversity should either encompass several taxonomic groups, or rely on the use of indicators of diversity that are not species based.  相似文献   

12.
Miombo woodlands constitute the most important type of vegetation in southern Africa, covering about 70% of the Zambezian phytoregion. This ecosystem, dominated by the genera Brachystegia, Julbernardia and Isoberlinia, has an immeasurable socio-economic and environmental value, playing a key role in formal and informal economies and in energy, water and carbon balances. Anthropogenic fires represent one of the major threats, compromising the stability of miombo. In this study we report on the usefulness of ISSR markers to assess, for the first time, the genetic diversity in two typical miombo species, Brachystegia boehmii Taub. and Burkea africana Hook. f. across a fire gradient in the Niassa National Reserve (NNR). According to our data, ISSR seem to be a suitable molecular marker's system for biodiversity studies in both species, generating high levels of polymorphisms coupled with a convenient resolving power. The results point to a link between fire-tolerance and genetic diversity, as judged by the higher diversity levels observed in B. africana (fire-tolerant) and by the evolutive fire response of B. boehmii. Although fire differentially affects the biodiversity in each species, in general, the overall genetic diversity was high and their survival does not seem to be compromised by the frequency of fires, agreeing with the fact that NNR is one of the least disturbed areas of deciduous miombo.  相似文献   

13.
A consensus has been established that functional traits rather than taxonomic diversity play a fundamental role in linking biodiversity with ecosystem processes and associated services. This study from Finland addressed an issue of relative values of fallow and field margin biotopes in conservation of plant functional diversity (based on six functional traits of relevance to ecosystem services, and diversity of multiple traits) in agricultural landscapes differing in their structural complexity. Relative covers of plant species were surveyed in sampling plots located in perennial fallow fields and three types of perennial margins (margins between crop fields, along forest edges and by river) in three types of landscape context (simple, intermediate and complex). Fallow fields significantly contributed to the total functional diversity only in simple landscapes. The river margins provided the greatest functional diversity, especially in reproduction and regeneration traits while crop margins were consistently characterized by the lowest functional diversity. Substantial functional diversity of fallow patches in simple landscapes was due to high abundance of functional species, while that of river margins stemmed from presence of unique species. The plant functional diversity progressively declined with agricultural landscapes becoming simplified. The study indicates non-cropped biotopes having complementary roles in ensuring multifunctionality of agro-landscapes and confirms importance of biotope mosaic for functional diversity.  相似文献   

14.
Wildfires underpin the dynamics and diversity of many ecosystems worldwide, and plants show a plethora of adaptive traits for persisting recurrent fires. Many fire-prone ecosystems also harbor a rich fauna; however, knowledge about adaptive traits to fire in animals remains poorly explored. We review existing literature and suggest that fire is an important evolutionary driver for animal diversity because (1) many animals are present in fire-prone landscapes and may have structural and phenotypic characters that contribute to adaptation to these open landscapes; and (2) in some cases, animals from fire-prone ecosystems may show specific fire adaptations. While there is limited evidence on morphological fire adaptations in animals, there is evidence suggesting that different behaviors might provide a rich source of putative fire adaptations; this is because, in contrast to plants, most animals are mobile, unitary organisms, have reduced survival when directly burnt by fire and can move away from the fire. We call for research on fire adaptations (morphological, behavioral, and physiological) in animals, and emphasize that in the animal kingdom many fire adaptations are likely to be behavioral. While it may be difficult to discern these adaptations from other animal behaviors, making this distinction is fundamental if we want to understand the role of fire in shaping biodiversity. Developing this understanding is critical to how we view and manage our ecosystems in the face of current global and fire regime changes.  相似文献   

15.
Understanding the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, needs a landscape perspective. Agriculture can contribute to the conservation of high‐diversity systems, which may provide important ecosystem services such as pollination and biological control via complementarity and sampling effects. Land‐use management is often focused on few species and local processes, but in dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance). Interacting species experience their surrounding landscape at different spatial scales, which influences trophic interactions. Structurally complex landscapes enhance local diversity in agroecosystems, which may compensate for local high‐intensity management. Organisms with high‐dispersal abilities appear to drive these biodiversity patterns and ecosystem services, because of their recolonization ability and larger resources experienced. Agri‐environment schemes (incentives for farmers to benefit the environment) need to broaden their perspective and to take the different responses to schemes in simple (high impact) and complex (low impact) agricultural landscapes into account. In simple landscapes, local allocation of habitat is more important than in complex landscapes, which are in total at risk. However, little knowledge of the relative importance of local and landscape management for biodiversity and its relation to ecosystem services make reliable recommendations difficult.  相似文献   

16.
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long‐lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed bank, soil physical and chemical characteristics, and initial vegetation recolonization following burn and (2) determine the rate of return of soil and vegetation characteristics to pre‐burn conditions. We found that burning of slash piles (composed of scores of whole trees) results in elevated nutrient levels and significant impacts on vegetation and the soil seed bank, which remain evident for at least 6 years following burn. In this ecosystem, formerly weakly acidic soils become neutral to basic and levels of P remain significantly higher. Following an initial decrease after burn, total soil N increases with time since burn. These changes suggest that not only does pile burning create a fire scar initially devoid of biota, but it also produces an altered soil chemical environment, with possible consequences for long‐term ecosystem restoration efforts in landscapes including numerous fire scars. To facilitate restoration trajectories, further adaptive management to incorporate native plant propagules or suppress encroaching hardwoods within fire scars may be warranted in fire‐dependent ecosystems.  相似文献   

17.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

18.
Aim To enhance current attempts to understand biodiversity patterns by using an historical ecology approach to highlight the over‐riding influence of land‐use history in creating past, current and future patterns of biodiversity in fragmented agricultural landscapes. Methods We develop an integrative conceptual framework for understanding spatial and temporal variations in landscape patterns in fragmented agricultural landscapes by presenting five postulates (hypotheses) which highlight the important role of historical, anthropogenic disturbance regimes. We then illustrate each of these postulates with examples drawn from fragmented woodlands in agricultural areas of south‐eastern Australia, and discuss these findings in an international context. Location examples are drawn from agricultural areas in south‐eastern Australia. Results We conclude that there is limited potential to refine our understanding of patterns of biodiversity in human‐modified landscapes based on traditional concepts of island biogeography, or simple assumptions of ongoing destruction and degradation. Instead, we propose that in agricultural landscapes that were largely cleared over a century ago: (1) present‐day remnant vegetation patterns are not accidental, but are logically arrayed due to historic land‐use decisions, (2) historic anthropogenic disturbances have a major influence on current ecosystem conditions and diversity patterns, and (3) the condition of remnant ecosystems is not necessarily deteriorating rapidly. Main conclusions An historical ecology approach can enhance our understanding of why different species and ecosystem states occur where they do, and can explain internal variations in ecological conditions within remnant ecosystems, too often casually attributed to the ‘mess of history’. This framework emphasizes temporal changes (both past and future) in biotic patterns and processes in fragmented agricultural landscapes. Integration of spatially and temporally explicit historical land‐use information into ecological studies can prove extremely useful to test hypotheses of the effects of changes in landscape processes, and to enhance future research, restoration and conservation management activities.  相似文献   

19.
Aim A common strategy for conserving biodiversity in fire‐prone environments is to maintain a diversity of post‐fire age classes at the landscape scale, under the assumption that ‘pyrodiversity begets biodiversity’. Another strategy is to maintain extensive areas of a particular seral state regarded as vital for the persistence of threatened species, under the assumption that this will also cater for the habitat needs of other species. We investigated the likely effects of these strategies on bird assemblages in tree mallee vegetation, characterized by multi‐stemmed Eucalyptus species, where both strategies are currently employed. Location The semi‐arid Murray Mallee region of south‐eastern Australia. Methods We systematically surveyed birds in 26 landscapes (each 4‐km diameter), selected to represent gradients in the diversity of fire age classes and the proportion of older vegetation (> 35 years since fire). Additional variables were measured to represent underlying vegetation‐ or fire‐mediated properties of the landscape, as well as its biogeographic context. We used an information‐theoretic approach to investigate the relationships between these predictor variables and the species richness of birds (total species, threatened species and rare species). Results Species richness of birds was not strongly associated with fire‐mediated heterogeneity. Species richness was associated with increasing amounts of older vegetation in landscapes, but not with the proportion of recently burned vegetation in landscapes. Main conclusions The preference of many mallee birds for older vegetation highlights the risk of a blanket application of the ‘pyrodiversity begets biodiversity’ paradigm. If application of this paradigm involved converting large areas from long unburned to recently burned vegetation to increase fire‐mediated heterogeneity in tree mallee landscapes, our findings suggest that this could threaten birds. This research highlights the value of adopting a landscape‐scale perspective when evaluating the utility of fire‐management strategies intended to benefit biodiversity.  相似文献   

20.
Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon–Wiener diversity index (H′) and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号