首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In boreal forested peatlands, we disturbed Sphagnum spp. and Pleurozium schreberi carpets to see how disturbance influenced substrate physico-chemistry, and growth and foliar nutrition of planted Picea mariana seedlings. Carpets were hand disturbed using gardening tools to a depth of approximately 25 cm. Carpet disturbance was aimed at disrupting only the organic layer and did not result in the mixing of organic matter with mineral soil. Disturbed carpets, whether P. schreberi or Sphagnum spp., were warmer than undisturbed carpets and had a lower cover of ericaceous shrubs. Pleurozium schreberi carpets had a higher decomposition index than Sphagnum spp. carpets, whereas disturbance had no effect on this variable. Pleurozium schreberi had higher Ntot and dissolved organic N concentrations (DON) than Sphagnum spp., whereas disturbance increased NH 4 + availability in both substrates. Moss disruption increased seedling growth rates as well as their foliar N and P concentrations in both substrates and these variables remained higher in P. schreberi than in Sphagnum spp. within a given treatment. Seedling growth was positively correlated to substrate Ntot, NH 4 + and DON concentrations, and to foliar N and P concentrations, and negatively to substrate C/N and ericaceous shrub cover. Disruption of the moss carpets without mineral soil mixing improved black spruce seedling growth and nutrition in both moss types but the superiority of P. schreberi compared to Sphagnum spp. as a growing substrate remained present.  相似文献   

2.
Pleurozium schreberi is one of the most common moss species in the forest area. It is dominant in the moss layer of blueberry and wood sorrel forests. It can occur in small quantities in almost all types of forests (even in bogs). It is also a typical component of the moss layer in tundra. The article considers the distribution of Pleurozium schreberi in the East European Plain and Eastern Fennoscandia. On the basis of literature sources on the occurrence of the species in different regions (according to point data), a model map of species distribution using the kriging-method has been created. The overlaying of the model map on the maps of spatial distribution of climatic parameters and vegetation zones in this area has revealed that the biogeographical preferences of the species. P. schreberi is characterized by its highest distribution in the forest zone. It often occurs here and represents a phytocenotically active species. The occurrence of Pleurozium schreberi dramatically decreases in the transition from the forest to the steppe zone, where it is a rather rare species, growing exclusively in pine and birch pegs. This species disappears in the open steppe. From the steppe zone to the south, the occurrence of Pleurozium schreberi gradually decreases with increase in summer temperatures and decrease in precipitation and with forest disappearance. In the north, where the species is highly active, its range abruptly ends on the coast of the Arctic Ocean. This pattern of distribution of Pleurozium schreberi is associated both with cenotic preferences and with climate: it becomes rare in regions with summer temperatures higher than +23°C and annual precipitation of less than 400 mm.  相似文献   

3.
Growing evidence suggests that maternal exposures to endocrine disrupting chemicals during pregnancy may lead to poor pregnancy outcomes and increased fetal susceptibility to adult diseases. Polybrominated diphenyl ethers (PBDEs), which are ubiquitously used flame-retardants, could leach into the environment; and become persistent organic pollutants via bioaccumulation. In the United States, blood PBDE levels in adults range from 30–100 ng/g- lipid but the alarming health concern revolves around children who have reported blood PBDE levels 3 to 9-fold higher than adults. PBDEs disrupt endocrine, immune, reproductive and nervous systems. However, the mechanism underlying its adverse health effect is not fully understood. Epigenetics is a possible biological mechanism underlying maternal exposure-child health outcomes by regulating gene expression without changes in the DNA sequence. We sought to examine the relationship between maternal exposure to environmental PBDEs and promoter methylation of a proinflammatory gene, tumor necrosis factor alpha (TNFα). We measured the maternal blood PBDE levels and cord blood TNFα promoter methylation levels on 46 paired samples of maternal and cord blood from the Boston Birth Cohort (BBC). We showed that decreased cord blood TNFα methylation associated with high maternal PBDE47 exposure. CpG site-specific methylation showed significantly hypomethylation in the girl whose mother has a high blood PBDE47 level. Consistently, decreased TNFα methylation associated with an increase in TNFα protein level in cord blood. In conclusion, our finding provided evidence that in utero exposure to PBDEs may epigenetically reprogram the offspring’s immunological response through promoter methylation of a proinflammatory gene.  相似文献   

4.
Soil microbial community structure was investigated by PLFA-analysis in four spruce forests in Norway. The maximum latitudinal distance between the sites was approximately 350 km. Bilberry Vaccinium myrtillus dominated the forest floor vegetation in the study sites, which were selected because of the vegetation type. Soil samples were taken from all four sites under close to 100% homogeneous ground cover of each of two feathermoss species, i.e. Hylocomium splendens or Pleurozium schreberi, respectively. These mosses are ubiquitous in the boreal forest and constitute an abundant component of the forest floor vegetation over vast areas. Since there are no studies on how these mosses affect soil microbial community structure, our first aim was to investigate the effect of moss species on soil microbial communities. Our second aim was to investigate whether microbial communities differ among geographically separated forest sites with similar vegetation across vegetation zones. Soil microbial community structure differed between the study sites, although they appeared similar in terms of vegetation and abiotic soil conditions. Study site was the most important predictor of the variation in the PLFAs, more important than moss species, although there was a tendency for separation of microbial community structure between the two moss species.  相似文献   

5.
Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms' trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having scarce biotransformation capability may be selectively more exposed to these halogenated hydrophobic semi-volatile organic pollutants due to their high bioaccumulation potential.  相似文献   

6.
Due to environmental persistence and biotoxicity of polybrominated diphenyl ethers (PBDEs), it is urgent to develop potential technologies to remediate PBDEs. Introducing electrodes for microbial electricity generation to stimulate the anaerobic degradation of organic pollutants is highly promising for bioremediation. However, it is still not clear whether the degradation of PBDEs could be promoted by this strategy. In this study, we hypothesized that the degradation of PBDEs (e.g., BDE-209) would be enhanced under microbial electricity generation condition. The functional compositions and structures of microbial communities in closed-circuit microbial fuel cell (c-MFC) and open-circuit microbial fuel cell (o-MFC) systems for BDE-209 degradation were detected by a comprehensive functional gene array, GeoChip 4.0, and linked with PBDE degradations. The results indicated that distinctly different microbial community structures were formed between c-MFCs and o-MFCs, and that lower concentrations of BDE-209 and the resulting lower brominated PBDE products were detected in c-MFCs after 70-day performance. The diversity and abundance of a variety of functional genes in c-MFCs were significantly higher than those in o-MFCs. Most genes involved in chlorinated solvent reductive dechlorination, hydroxylation, methoxylation and aromatic hydrocarbon degradation were highly enriched in c-MFCs and significantly positively correlated with the removal of PBDEs. Various other microbial functional genes for carbon, nitrogen, phosphorus and sulfur cycling, as well as energy transformation process, were also significantly increased in c-MFCs. Together, these results suggest that PBDE degradation could be enhanced by introducing the electrodes for microbial electricity generation and by specifically stimulating microbial functional genes.  相似文献   

7.
Qiu M  Chen X  Deng D  Guo J  Sun G  Mai B  Xu M 《Biodegradation》2012,23(3):351-361
Polybrominated diphenyl ethers (PBDEs) are a class of widely used flame retardants that have been highly accumulated in sediments. It is reported that microorganisms play an important role in the reductive debromination of PBDEs in anaerobic sediments. However, little is known about the effects of electron donors on the microbial community structure and their debromination capacity in PBDE transformation. In this study, alternate carbon substrates were used as electron donors to enrich the PBDE-debrominating microbial consortia to evaluate the effects of electron donors on PBDE microbial debromination. Decabromodiphenyl ether (BDE-209) was found to be the dominant (more than 50%) PBDEs congener in all consortia, and the percentage of BDE-209 was deceased by 12% (methanol), 11% (ethanol), 8% (acetate), 9% (lactate), 5% (pyruvate), and 11% (no electron donors), while the relative abundances of most lesser-brominated PBDEs increased after 90-day incubation compared to the initial profile of PBDEs. Substantial shifts in the microbial community structure among different amendments were observed based on denaturing gradient gel electrophoresis results. Pseudomonas spp. were identified to be the predominant organisms and the abundances of Band R, which was associated with Pseudomonas sp. SCSWA09, was well correlated with the biodegradation rate of BDE-209. Finally, the microbial community structure was highly correlated with the concentration of deca-BDE, octa-BDE and total nitrogen. These results provide insights into in situ bioremediation of environments contaminated by PBDEs and our understanding of microbial ecology associated with PBDE-debromination.  相似文献   

8.
Polybrominated diphenyl ethers (PBDEs) are a class of environmental pollutants that have been classified as persistent organic pollutants since 2009. In this study, a sediment-free enrichment culture (culture G) was found to reductively debrominate octa- and penta-BDE technical mixtures to less-brominated congeners (tetra-, tri-, and di-BDEs) via a para-dominant debromination pattern for the former and a strict para debromination pattern for the latter. Culture G could debrominate 96% of 280 nM PBDEs in an octa-BDE mixture to primarily tetra-BDEs in 21 weeks. Continuous transferring of culture G with octa-/penta-BDEs dissolved in n-nonane or trichloroethene (TCE) yielded two strains (Acetobacterium sp. strain AG and Dehalococcoides sp. strain DG) that retained debromination capabilities. In the presence of lactate but without TCE, strain AG could cometabolically debrominate 75% of 275 nM PBDEs in a penta-BDE mixture in 33 days. Strain AG shows 99% identity to its closest relative, Acetobacterium malicum. In contrast to strain AG, strain DG debrominated PBDEs only in the presence of TCE. In addition, 18 out of 19 unknown PBDE debromination products were successfully identified from octa- and penta-BDE mixtures and revealed, for the first time, a comprehensive microbial PBDE debromination pathway. As an acetogenic autotroph that rapidly debrominates octa- and penta-BDE technical mixtures, Acetobacterium sp. strain AG adds to the still-limited understanding of PBDE debromination by microorganisms.  相似文献   

9.
We investigated the responses of ultraviolet (UV)‐absorbing compounds, chlorophylls a and b, carotenoids and the growth responses of the pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced UV radiation in situ. The moss was exposed to a 52% elevation above the ambient level of erythemally weighted UV‐B radiation, simulating an approximate 20% reduction in the ozone column, in a dry pine forest in Sodankylä, Finland (67 °22′N, 26 °38′E), under arrays of lamps filtered with cellulose diacetate, which transmitted both UV‐B and UV‐A radiation. The moss was also exposed to elevated UV‐A radiation under control arrays of lamps filtered with Melinex polyester and to ambient radiation under arrays with no lamps in them. Effects of enhanced UV radiation on P. schreberi were recorded during the first 3 years of exposure. Enhanced UV‐B radiation did not affect the segment height growth of the moss. The annual dry mass after the second growing season was higher in the UV‐A control than in the other treatments, and dry mass decreased significantly during the third treatment year in both UV treatments compared with the ambient. The specific leaf area of the UV‐B‐treated mosses was significantly higher than the ambient control mosses during the first 2 years. An increase of UV‐absorbing compounds was found in the mosses under enhanced UV‐B radiation compared with the UV‐A control mosses during the first year. Even though the treatment effect on UV‐absorbing compounds was transient, the concentrations of these compounds correlated with the amount of UV‐A and UV‐B radiation received under the elevated UV‐B treatment. A correlation with the irradiation of previous days and preceding month of the sampling day was found. A seasonal reduction occurred in the amount of UV‐absorbing compounds from the beginning of the summer to late summer. The amount of photosynthetic pigments correlated with the amount of photosynthetically active radiation. The moss P. schreberi was thus found to tolerate increasing UV‐B radiation. Our data indicate that P. schreberi tolerates a 52% increase in erythemally weighted UV‐B radiation above ambient, responding during the first few years of exposure by increasing UV‐absorbing compounds and specific leaf area, and decreasing annual dry mass, and then acclimating to its altered radiation environment.  相似文献   

10.
The pleurocarpus feather moss, Hylocomium splendens, is one of two co-dominant moss species in boreal forest ecosystems and one of the most common mosses on earth, yet little is known regarding its capacity to host cyanobacterial associates and thus contribute total ecosystem N. In these studies, we evaluated the N-fixation potential of the H. splendens–cyanobacteria association and contrasted the N-fixation activity with that of the putative N-fixing moss–cyanobacteria association of Pleurozium schreberi. Studies were conducted to: quantify N-fixation in H. splendens and P. schreberi in sites ranging from southern to northern Fennoscandia; assess N and P availability as drivers of N-fixation rates; contrast season-long N-fixation rates for both mosses; and characterize the cyanobacteria that colonize shoots of H. splendens. Nitrogen-fixation rates were generally low at southern latitudes and higher at northern latitudes (64–69°N) potentially related to anthropogenic N deposition across this gradient. Nitrogen fixation in H. splendens appeared to be less sensitive to N deposition than P. schreberi. The season-long assessment of N-fixation rates at a mixed feather moss site in northern Sweden showed that H. splendens fixed a substantial quantity of N, but about 50% less total N compared to the contribution from P. schreberi. In total, both species provided 1.6 kg fixed N ha−1 year−1. Interestingly, H. splendens demonstrated somewhat higher N-fixation rates at high fertility sites compared to P. schreberi. Nostoc spp. and Stigonema spp. were the primary cyanobacteria found to colonize H. splendens and P. schreberi. These results suggest that H. splendens with associated Nostoc or Stigonema communities contributes a significant quantity of N to boreal forest ecosystems, but the contribution is subordinate to that of P. schreberi at northern latitudes. Epiphytic cyanobacteria are likely a key factor determining the co-dominant presence of these two feather mosses across the boreal biome.  相似文献   

11.
Polybrominated diphenyl ethers (PBDEs) have attracted attention recently due to their proven adverse effects on animals and their increasing concentrations in various environmental media and biota. To gain insight into the fate of PBDEs, microcosms established with soils and sediments from 28 locations were investigated to determine their debromination potential with an octa-brominated diphenyl ether (octa-BDE) mixture consisting of hexa- to nona-BDEs. Debromination occurred in microcosms containing samples from 20 of the 28 locations when they were spiked with octa-BDE dissolved in the solvent trichloroethene (TCE), which is a potential cosubstrate for stimulating PBDE debromination, and in microcosms containing samples from 11 of the 28 locations when they were spiked with octa-BDE dissolved in nonane. Debromination products ranging from hexa- to mono-BDEs were generated within 2 months. Notably, the toxic tetra-BDEs accounted for 50% of the total product. In sediment-free culture C-N-7* amended with the octa-BDE mixture and nonane (containing 45 nM nona-BDE, 181 nM octa-BDEs, 294 nM hepta-BDE, and 19 nM hexa-BDE) there was extensive debromination of the parent compounds, which produced hexa-BDE (56 nM), penta-BDEs (124 nM), and tetra-BDEs (150 nM) within 42 days, possibly by a metabolic process. A 16S rRNA gene-based analysis revealed that Dehalococcoides species were present in 11 of 14 active microcosms. However, unknown debrominating species in some of the microcosms debrominated the octa-BDE mixture in the absence of other added halogenated electron acceptors (such as TCE). These findings provide information that is useful for assessing microbial reductive debromination of higher brominated PBDEs to less-brominated congeners, a possible source of the more toxic congeners (e.g., penta- and tetra-BDEs) detected in the environment.Since they were first developed in the 1960s, polybrominated diphenyl ethers (PBDEs) have been used as flame retardant additives in an array of common household and industrial appliances. As a result of their widespread use, PBDEs have become ubiquitous environmental contaminants, and increasing levels have been detected in the air, soil, and water (5, 12). In a recent study, Leung et al. reported the highest PBDE concentrations in soil samples (2.7 to ∼4.3 ppb) and combusted residues (33.0 to ∼97.4 ppb) that were collected in Guiyu, Guangdong Province, China (18). More worrisome is the fact that increasing concentrations of PBDEs have also been detected in marine mammals, birds, fishes, and human tissues (3, 14, 20, 30), and 63 ppm of PBDEs in bird eggs is the highest level ever found in biota (23). The PBDE concentrations in both environmental samples and biota have been increasing exponentially, with a doubling time of 4 to 6 years (5, 12). Although the PBDEs comprise 209 different congeners designated 1 to 209, the PBDE congeners most often detected in biota (e.g., human tissues) include tetra-brominated diphenyl ether (tetra-BDE) (congener 47), penta-BDEs (congeners 99 and 100), and hexa-BDEs (congeners 153 and 154), which may have originated directly from a commercially available penta-BDE technical mixture or indirectly via breakdown of an octa- or deca-BDE technical mixture (10, 12). PBDEs began to receive worldwide scientific and public attention when a temporal study performed from 1972 to 1997 revealed increasing concentrations of PBDEs in Swedish human breast milk (19). Toxicological studies of rodents using a commercial penta-BDE mixture (including tetra-, penta- and hexa-BDEs) and congeners in a commercial octa-BDE mixture (such as hepta-BDE [congener 183] and octa-BDE [congener 203]) revealed developmental neurotoxicity, reproductive toxicity, liver toxicity, and disruption of thyroid hormone levels (24, 26, 29).To date, studies of PBDEs have focused mainly on detection of these compounds in the environment and their potential adverse health effects; only a few studies have reported microbial debromination of PBDEs (7, 10, 22, 25). Recently, He et al. demonstrated debromination of a technical octa-BDE mixture by pure isolates of Dehalococcoides species, which generated hepta- to di-BDEs after 6 months of incubation (10). Additionally, microbes belonging to the genera Dehalobacter and Desulfitobacterium were also found to be able to debrominate individual PBDE congeners present in commercial octa-BDE mixtures (10, 22). However, the debromination of PBDEs in both studies required the presence of a primary electron acceptor (e.g., chloroethenes or chlorophenols); in other words, debromination occurred cometabolically.In addition to debromination of PBDEs by pure cultures, a previous study demonstrated that in anaerobic sludge 5% of added deca-BDE (congener 209) was debrominated to nona- and octa-BDEs (total amount of product, 0.5 nmol) after 238 days of incubation (7). Moreover, another study showed that deca-BDE was debrominated to products ranging from nona-BDEs to hexa-BDEs in 3.5 years with anaerobic sediments as the inocula (25). These findings suggest that microbial reductive debromination of highly brominated congeners, such as deca-, nona-, octa-, and hepta-BDEs, may contribute to formation of less-brominated PBDEs in the environment, which are potentially more toxic (e.g., tetra- and penta-BDEs). Additionally, debromination of less-brominated PBDE congeners, such as di-BDE, to mono-BDE and diphenyl ether was demonstrated in a fixed-film plug flow biological reactor (21). Besides microbial debromination, highly brominated PBDEs were also found to be transformed to lower congeners via photodegradation or in vivo metabolism in aquatic and terrestrial animals (1, 16).This study was initiated to obtain information about the distribution of microorganisms capable of debrominating highly brominated PBDE congeners to more toxic daughter products or the final product diphenyl ether by assessing microcosm samples collected from various locations. Debromination of an octa-BDE mixture was evaluated in the presence of the potential energy-generating cosubstrate trichloroethene (TCE) (PBDEs dissolved in TCE) or in the presence of the relatively inert solvent nonane (PBDEs dissolved in nonane). The latter experiment provided, for the first time, information about the possible microbes living on the energy generated from the debromination of an octa-BDE mixture in the absence of any cosubstrate, such as TCE or another primer compound. Initial insights into the key debrominating microbes were obtained by using genus-specific 16S rRNA gene-based techniques.  相似文献   

12.
The placenta is the principal regulator of the in utero environment, and disruptions to this environment can result in adverse offspring health outcomes. To better characterize the impact of in utero perturbations, we assessed the influence of known environmental pollutants on the expression of microRNA (miRNA) in placental samples collected from the National Children''s Study (NCS) Vanguard birth cohort. This study analyzed the expression of 654 miRNAs in 110 term placentas. Environmental pollutants measured in these placentas included dichlorodiphenyldichloroethylene (DDE), bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd). A moderated t-test was used to identify a panel of differentially expressed miRNAs, which were further analyzed using generalized linear models. We observed 112 miRNAs consistently expressed in >70% of the samples. Consistent with the literature, miRNAs located within the imprinted placenta-specific C19MC cluster, specifically mir-517a, mir-517c, mir-522, and mir-23a, are among the top expressed miRNA in our study. We observed a positive association between PBDE 209 and miR-188–5p and an inverse association between PBDE 99 and let-7c. Both PCBs and Cd were positively associated with miR-1537 expression level. In addition, multiple let-7 family members were downregulated with increasing levels of Hg and Pb. We did not observe DDE or BPA levels to be associated with placental miRNA expression. This is the first birth cohort study linking environmental pollutants and placental expression of miRNAs. Our results suggest that placental miRNA profiles may signal in utero exposures to environmental chemicals.  相似文献   

13.
We measured the concentrations of selected persistent organic pollutants (POPs) such as parent and halogenated polycyclic aromatic hydrocarbons (PAHs and HPAHs) and polybrominated diphenyl ethers (PBDEs) in indoor dust (ID) and indoor cockroach samples collected from Shenzhen, South China. Biota-dust accumulation factors (BDAFs) were computed and utilized to quantify targeted pollutant bioaccumulation in ID and cockroaches. Generally, halogenated compounds have higher BDAFs when compared to non-halogenated compounds. There are significant differences (p < 0.05) between the BDAFs of non-halogenated POPs (PAHs) and halogenated POPs (HPAHs and PBDEs). Correlation analysis of target pollutants’ levels in ID and cockroaches were also conducted. The correlation coefficients for PAHs are less than 0.2 (p > 0.5) suggesting no significant relationship exists for PAHs between ID and cockroaches. In contrast, significant correlations exist for halogenated POPs (HPAH and PBDE) between ID and cockroaches (correlation coefficients >0.94, p < 0.0001). Based on this, the potential of cockroaches to be used as reliable bioindicators of POPs contamination of indoor environments was preliminarily evaluated. Our results indicate that indoor cockroaches may be useful bioindicator of indoor pollution for HPAHs and PBDEs contaminations.  相似文献   

14.

Background and aims

The feather moss Pleurozium schreberi (Brid.) Mitt. is colonized by cyanobacteria, which fix substantial amounts of atmospheric nitrogen (N) in pristine and N-poor ecosystems. Cyanobacterial N2 fixation is inhibited by N deposition. However, the threshold of N input that leads to the inhibition of N2 fixation has not been adequately investigated. Further, the ability of N2 fixation to recover in mosses from high N deposition areas has not been studied to date.

Methods

We conducted two laboratory studies in which we (1) applied a range of concentrations of N as NH4NO3 to mosses from low N-deposition areas, and (2) we deprived mosses from a high N-deposition area of N to test their ability to recover N2 fixation.

Results

Higher addition rates (up to 10 kg N ha?1) did not systematically inhibit N2 fixation in P. schreberi. Conversely, upon weeks of N deprivation of mosses from a high N environment, N2 fixation rates increased.

Conclusions

The threshold of total N deposition above which N2 fixation in P. schreberi is inhibited is likely to be > 10 kg N ha?1. Further, cyanobacteria are able to recover from high N inputs and are able to fix atmospheric N2 after a period of N deprivation.  相似文献   

15.
A simple, rapid, sensitive and reproducible method based on solid-phase extraction (SPE) and acidified silica clean-up was developed for the measurement of 12 polybrominated diphenyl ethers (PBDEs), including BDE 209, and 2,2',4,4',5,5'-hexabromobiphenyl (BB 153) in human serum. Several solid-phase sorbents (Empore C(18), Isolute Phenyl, Isolute ENV+ and OASIS HLB) were tested and it was found that OASIStrade mark HLB (500 mg) gives the highest absolute recoveries (between 64% and 95%, R.S.D.<17%, n=3) for all tested analytes and internal standards. Removal of co-extracted biogenic materials was performed using a 6 ml disposable cartridge containing (from bottom to top) silica impregnated with sulphuric acid, activated silica and anhydrous sodium sulphate. PBDEs and BB 153 were quantified using a gas chromatograph coupled with a mass spectrometer (MS) operated in electron-capture negative ionization mode. The method limits of quantification (LOQ) ranged between 0.2 and 25 pg/ml serum (0.1 and 4 ng/g lipid weight). LOQs were dependent on the analyte levels in procedural blanks which resulted in the highest LOQs for PBDE congeners found in higher concentrations in blanks (e.g. BDE 47, 99 and 209). The use of OASIS HLB SPE cartridge allowed a good method repeatability (within- and between-day precision<12% for all congeners, except for BDE 209<17%, n=3). The method was applied to serum samples from a random Belgian population. The obtained results were within the range of PBDE levels in other non-exposed population from Europe.  相似文献   

16.
17.
Polybrominated diphenyl ethers (PBDEs), chemicals commonly used as flame‐retardants in consumer products, are emerging persistent organic pollutants that are ubiquitous in the environment. In this study, we report a PBDE‐respiring isolate – Dehalococcoides mccartyi strain GY50, which debrominates the most toxic tetra‐ and penta‐BDE congeners (~1.4 µM) to diphenyl ether within 12 days with hydrogen as the electron donor. The complete genome sequence revealed 26 reductive dehalogenase homologous genes (rdhAs), among which three genes (pbrA1, pbrA2 and pbrA3) were highly expressed during PBDE debromination. After 10 transfers of GY50 with trichloroethene or 2,4,6‐trichlorophenol as the electron acceptor instead of PBDEs, the ssrA‐specific genome island (ssrA‐GI) containing pbrA1 and pbrA2 was deleted from the genome of strain GY50, leading to two variants (strain GY52 with trichloroethene, strain GY55 with 2,4,6‐trichlorophenol) with identically impaired debromination capabilities (debromination of penta‐/tetra‐BDEs ceased at di‐BDE 15). Through analysis of Illumina paired‐end sequencing data, we identified read pairs that probably came from variants that contain ssrA‐GI deletions, indicating their possible presence in the original strain GY50 culture. The two variant strains provide real‐time examples on rapid evolution of organohalide‐respiring organisms. As PBDE‐respiring organisms, GY50‐like strains may serve as key players in detoxifying PBDEs in contaminated environments.  相似文献   

18.
Polybrominated diphenyl ethers (PBDEs) are widely used as additive flame-retardants and have been detected in human blood, adipose tissue, and breast milk. Developmental and long-term exposures to these chemicals may pose a human health risk, especially to children. We have previously demonstrated that polychlorinated biphenyls (PCBs), which are structurally similar to PBDEs and cause neurotoxicity, perturb intracellular signaling events including calcium homeostasis and protein kinase C translocation, which are critical for neuronal function and development of the nervous system. The objective of the present study was to test whether environmentally relevant PBDE congeners 47 and 99 are also capable of disrupting Ca2 + homeostasis. Calcium buffering was determined by measuring 45Ca2 + -uptake by microsomes and mitochondria, isolated from adult male rat brain (frontal cortex, cerebellum, hippocampus, and hypothalamus). Results show that PBDEs 47 and 99 inhibit both microsomal and mitochondrial 45Ca2 + -uptake in a concentration-dependent manner. The effect of these congeners on 45Ca2 + -uptake is similar in all four brain regions though the hypothalamus seems to be slightly more sensitive. Among the two preparations, the congeners inhibited 45Ca2 + -uptake in mitochondria to a greater extent than in microsomes. These results indicate that PBDE 47 and PBDE 99 congeners perturb calcium signaling in rat brain in a manner similar to PCB congeners, suggesting a common mode of action of these persistent organic pollutants. The research described in this article has been reviewed by the National Health and Environmental Effects Research Laboratory of the US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency nor does mention of trade names or commercial products constitute endorsement or recommendation for use. These results will be presented at the 21th Biennial Meeting of International Society for Neurochemistry and American Society for Neurochemistry in Cancun, Mexico (August 19–24, 2007). Special issue article in honor of Dr. Frode Fonnum.  相似文献   

19.
Informal electronic waste (e-waste) recycling results in serious environmental pollution of polybrominated diphenyl ethers (PBDEs) and heavy metals. This study explored whether there is an association between PBDEs, heavy metal and key growth- and development-related hormones in children from Guiyu, an e-waste area in southern China. We quantified eight PBDE congeners using gas chromatographic mass spectrometry, lead and cadmium utilizing graphite furnace atomic absorption spectrometry, three thyroids with radioimmunoassay and two types of growth hormones by an enzyme-linked immune-sorbent assay (ELISA) in 162 children, 4 to 6 years old, from Guiyu. In blood, median total PBDE was 189.99 ng/g lipid. Lead and cadmium concentrations in blood averaged 14.53±4.85 µg dL−1 and 0.77±0.35 µg L−1, respectively. Spearman partial correlation analysis illustrated that lead was positively correlated with BDE153 and BDE183. Thyroid-stimulating hormone (TSH) was positively correlated with almost all PBDE congeners and negatively correlated with insulin-like growth factor binding protein-3 (IGFBP-3), whereas free triiodothyronine (FT3) and free thyroxine (FT4) were negatively correlated with BDE154. However, no correlation between the hormones and blood lead or cadmium levels was found in this study. Adjusted multiple linear regression analysis showed that total PBDEs was negatively associated with FT3 and positively associated with TSH. Notably, FT4 was positively correlated with FT3, house functions as a workshop, and father''s work involved in e-waste recycling and negatively correlated with vitamin consumptions. TSH was negatively related with FT4, paternal residence time in Guiyu, working hours of mother, and child bean products intake. IGFBP-3 was positively correlated with IGF-1 and house close to an e-waste dump. These results suggest that elevated PBDEs and heavy metals related to e-waste in Guiyu may be important risk factors for hormone alterations in children.  相似文献   

20.
Rapid growth of ground vegetation following clear-cutting is important to site productivity because vegetation retains nutrients in the ecosystem and can decrease nutrient leaching prior to stand re-establishment. Aboveground biomass, nutrient contents (N, P, K and Ca) and species composition of ground vegetation were determined 1 year before and for 7 years after clear-cutting of a mixed forest dominated by Norway spruce [Picea abies (L.) H. Karst.] in eastern Finland. The biomass of the feather mosses [Pleurozium schreberi Brid. and Hylocomium splendens (Hedw.) B. S.& G.] and the dwarf shrubs (Vaccinium myrtillus L. and V. vitis-idaea L.), which had dominated the ground vegetation in the mature forest, significantly decreased after clear-cutting. However, with the exception of H. splendens, these species had recovered within 3–5 years. The biomass of Deschampsia flexuosa (L.) Trin. considerably increased soon after clear-cutting, and Epilobium angustifolium L. appeared 3–5 years after cutting. These species contributed to the retention of nutrients not simply because of their biomass but also because of higher nutrient concentrations in their tissues. Total biomass and nutrient contents of the ground vegetation exceeded those of the pre-cutting levels. The proportion of ground vegetation biomass and nutrient contents represented by mosses decreased after cutting, while V. myrtillus, although reduced after cutting, remained a marked nutrient sink. The results suggest that H. splendens is the most sensitive species to cutting, but the biomass of P. schreberi, V. myrtillus and V. vitis-idaea return to initial levels soon after clear-cutting as do the nutrient contents of ground vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号