首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding mechanistic relationships between seagrass and their environmental stressors should be considered for effective management of estuaries and may inform on why change has occurred. We aimed to develop indicators for seagrass health in response to sediment conditions for the Swan-Canning Estuary, south-west Australia. This article describes the development of a new sediment-stress indicator, relating aspects of seagrass productivity with sediment sulfur dynamics. Sulfur stable isotope ratio and total sulfur were measured monthly within the roots, rhizomes and leaves of Halophila ovalis, and significantly varied across sites and months. The growth of seagrass over the summer months appeared restricted by sediment condition, with growth of seagrass lower when sediment derived sulfur and/or total sulfur within rhizome of leaf tissues was higher. H. ovalis appeared quite tolerant of sulfide intrusion within the root compartment, but growth was compromised when sulfide breached the root–rhizome barrier. The tightest correlation between potential sulfur metrics and seagrass growth was observed for the ratio (δ34Sleaf + 30)/(TSleaf), and it is this ratio that we propose may be a useful sediment-stress indicator for seagrass. The study also highlights that sediment condition needs to be considered at the meadow scale.  相似文献   

2.
This study used stable‐isotope analysis to define the nearshore regional residency and movements of the small‐bodied Australian sharpnose shark Rhizoprionodon taylori. Plasma and muscle δ13C and δ15N of R. taylori were collected from across five embayments and compared with values of seagrass and plankton from each bay. Linear distances between adjacent bays ranged from 30 to 150 km. There was a positive geographic correlation between R. taylori tissue and environmental δ13C values. Populations with the highest tissue δ15N were collected from bays that had the highest environmental δ15N values. These results suggest that R. taylori did not forage more than 100 km away from their capture location within 6 months to 1 year. The successful application of isotope analysis to define R. taylori movement demonstrates that this technique may be used in addition to traditional methods to study the movement of sharks, even within similar habitats across regionally small spatial scales (<100 km).  相似文献   

3.
Stable carbon and nitrogen isotope analysis was used to examine the food sources and trophic structure of 17 fish species and six groups of benthic macroinvertebrates in a seagrass meadow in North Sulawesi, Indonesia. The seagrass, their associated epiphytes, sediment organic matter (SOM) and particulate organic matter (POM) were identified to be the food sources, with δ13C values ranging from ?19.49 (POM) to ?9.66‰ (seagrass). The δ13C of the 23 fauna taxa were between ?18.57 (Arothron manilensis) and ?11.62‰ (Protoreaster sp.). For five of the six groups of benthic macroinvertebrates, seagrass and their epiphytes contributed more than 69.4%. For 14 of the 17 fish species, seagrass and their epiphytes are the main contributors. For 15 of the 17 fishes, the trophic levels inferred from SIA are lower than those from the previously reported diet composition analysis. These findings show that seagrass and their epiphytes are consumed by most of the fish and benthic macroinvertebrates, and are important for a large portion of the food web in seagrass meadows in the Coral Triangle area.  相似文献   

4.
Seagrasses and eutrophication   总被引:2,自引:0,他引:2  
This review summarizes the historic, correlative field evidence and experimental research that implicate cultural eutrophication as a major cause of seagrass disappearance. We summarize the underlying physiological responses of seagrass species, the potential utility of various parameters as indicators of nutrient enrichment in seagrasses, the relatively sparse available information about environmental conditions that exacerbate eutrophication effects, and the better known array of indirect stressors imposed by nutrient over-enrichment that influence seagrass growth and survival. Seagrass recovery following nutrient reductions is examined, as well as the status of modeling efforts to predict seagrass response to changing nutrient regimes.The most common mechanism invoked or demonstrated for seagrass decline under nutrient over-enrichment is light reduction through stimulation of high-biomass algal overgrowth as epiphytes and macroalgae in shallow coastal areas, and as phytoplankton in deeper coastal waters. Direct physiological responses such as ammonium toxicity and water-column nitrate inhibition through internal carbon limitation may also contribute. Seagrass decline under nutrient enrichment appears to involve indirect and feedback mechanisms, and is manifested as sudden shifts in seagrass abundance rather than continuous, gradual changes in parallel with rates of increased nutrient additions. Depending on the species, interactions of high salinity, high temperature, and low light have been shown to exacerbate the adverse effects of nutrient over-enrichment. An array of indirect effects of nutrient enrichment can accelerate seagrass disappearance, including sediment re-suspension from seagrass loss, increased system respiration and resulting oxygen stress, depressed advective water exchange from thick macroalgal growth, biogeochemical alterations such as sediment anoxia with increased hydrogen sulfide concentrations, and internal nutrient loading via enhanced nutrient fluxes from sediments to the overlying water. Indirect effects on trophic structure can also be critically important, for example, the loss of herbivores, through increased hypoxia/anoxia and other habitat shifts, that would have acted as “ecological engineers” in promoting seagrass survival by controlling algal overgrowth; and shifts favoring exotic grazers that out-compete seagrasses for space. Evidence suggests that natural seagrass population shifts are disrupted, slowed or indefinitely blocked by cultural eutrophication, and there are relatively few known examples of seagrass meadow recovery following nutrient reductions.Reliable biomarkers as early indicators of nutrient over-enriched seagrass meadows would benefit coastal resource managers in improving protective measures. Seagrasses can be considered as “long-term" integrators (days to weeks) of nutrient availability, especially through analyses of their tissue content, and of activities of enzymes such as nitrate reductase and alkaline phosphatase. The ratio of leaf nitrogen content to leaf mass has also shown promise as a “nutrient pollution indicator” for the seagrass Zostera marina, with potential application to other species. In modeling efforts, seagrass response to nutrient loading has proven difficult to quantify beyond localized areas because long-term data consistent in quality are generally lacking, and high inter-annual variability in abundance and productivity depending upon stochastic meteorological and hydrographic conditions.Efforts to protect remaining seagrass meadows from damage and loss under eutrophication, within countries and across regions, are generally lacking or weak and ineffective. Research needs to further understand about seagrasses and eutrophication should emphasize experimental studies to assess the response of a wider range of species to chronic, low-level as well as acute, pulsed nutrient enrichment. These experiments should be conducted in the field or in large-scale mesocosms following appropriate acclimation, and should emphasize factor interactions (N, P, C; turbidity; temperature; herbivory) to more closely simulate reality in seagrass ecosystems. They should scale up to address processes that occur over larger scales, including food-web dynamics that involve highly mobile predators and herbivores. Without any further research, however, one point is presently very clear: Concerted local and national actions, thus far mostly lacking, are needed worldwide to protect remaining seagrass meadows from accelerating cultural eutrophication in rapidly urbanizing coastal zones.  相似文献   

5.
We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.  相似文献   

6.
Dahl  Joakim  Johnson  Richard K.  Sandin  Leonard 《Hydrobiologia》2004,511(1-3):161-172
A 210Pb-dated sediment core from a small bay in the southern basin of Lake Petén Itzá, Guatemala documents recent cultural eutrophication. Increased sediment accumulation beginning ~1930 A.D. coincided with catchment population growth and was a consequence of watershed deforestation and increased surface run-off. At the same time, geochemical records from the Lake Petén Itzá sediment core indicate increased phosphorus loading and organic matter accumulation. High nutrient concentrations after 1965 A.D. coincided with lower sediment C/N ratios, suggesting an increase in the relative contribution of phytoplankton to the organic matter pool. This inference is confirmed by the dominance of eutrophic and hypereutrophic diatom species. Organic matter δ13C values decreased after 1965 A.D., seemingly contradicting other indicators of recent eutrophication in the southern basin of Lake Petén Itzá. Relatively depleted δ13C values in recent sediments, however, may reflect a contribution from 13C-depleted sewage effluent. Increased δ15N of organic matter after 1965 A.D. indicates changes in the dissolved inorganic nitrogen delivered to the lake. The relatively small increase in δ15N (~0.6‰ ) is less than might be expected with nitrate loading from sewage and soils, and might be offset by the presence of nitrogen-fixing cyanobacteria with low δ15N values.  相似文献   

7.
The main goal of this study was to evaluate the response of intertidal macrobenthic communities associated with Zostera noltii meadows in a temperate estuary (Mondego, Portugal) to the application of mitigation measures aimed at decreasing eutrophication symptoms. In order to assess possible ecological improvements regarding the seagrass habitat and associated macrobenthic communities, data from four different periods, corresponding to the prevailing conditions of distinct systems, were considered. This study (1) gives concrete examples of pathways of benthic intertidal communities’ degradation and recovery; (2) it analyses a long-term dataset (covering almost 25 years) of intertidal communities from a southern European estuary; (3) it is focused on a worldwide problem, and so has potentially far-reaching interest; (4) it exemplifies some of what may be the consequences of the dialogue between science and managers; (5) it assesses the impact and effectiveness of a large-scale mitigation intervention paid for by public funding.The application of preliminary mitigation measures (in 1998) and the full re-establishment of the communication between the two estuarine subsystems (in 2006) allowed for an improvement in the macrobenthic condition and confirmed that hydrologic conditions in the estuary have been the major drivers of the changes observed over the last two decades. However, evaluating the efficiency of the large-scale intervention proved to be a complex task since different communities showed distinct pathways and momentums of recovery.The present study provided valuable insights concerning sustainable long-term management solutions regarding the Mondego Estuary. These particular insights could therefore be useful as a management action guideline applied to other estuarine ecosystems undergoing similar eutrophication problems.  相似文献   

8.
Stable‐isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food‐web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13C and δ15N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio‐temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food‐web integrity.  相似文献   

9.
Although seagrass-based indicators are widely used to assess coastal ecosystem status, there is little universality in their application. Matching the plethora of available indicators to specific management objectives requires a detailed knowledge of their species-specific sensitivities and their response time to environmental stressors. We conducted an extensive survey of experimental studies to determine the sensitivity and response time of seagrass indicators to ecosystem degradation and recovery. We identified seagrass size and indicator type (i.e. level of biological organization of the measure) as the main factors affecting indicator sensitivity and response time to degradation and recovery. While structural and demographic parameters (e.g. shoot density, biomass) show a high and unspecific sensitivity, biochemical/physiological indicators present more stressor-specific responses and are the most sensitive detecting early phases of environmental improvement. Based on these results we present a simple decision tree to assist ecosystem managers to match adequate and reliable indicators to specific management goals.  相似文献   

10.
Estuarine ecosystems are easily deteriorated by organic pollution because of its high primary productivity. To identify chemical proxies for the possible sources of autochthonous organic matter [phytoplankton-derived particulate organic material (POM), macroalgae and seagrass], we measured C:N:P and the ratios of carbon and nitrogen stable isotopes (δ13C and δ15N values) in two estuarine environments, the polyhaline lagoon, Lake Nakaumi, and the oligohaline lagoon, Lake Shinji, in Japan. Due to vigorous photosynthesis, the δ13C of phytoplankton-derived POM in Lake Nakaumi was larger than what would normally be expected from estuarine salinity gradients. Concentrations of nitrogen and phosphorus did not affect the δ13C of phytoplankton-derived POM. The δ15N of all plants was uniform and was higher than the δ15N of sediments. The seagrass showed a higher C:N ratio than POM and macroalgae, while the macroalgae showed a higher N:P ratio. Thus, simultaneous evaluation of C:N and N:P ratios would distinguish these three plant groups, and it would be possible to identify the source plants from the elemental ratios of the sediments.  相似文献   

11.
Despite the fact that iron plaque formation is ubiquitous in aquatic macrophytes and has been known for several decades, there are few reports of plaque occurrence in seagrasses to date. Herein we present the first microscopical observation and chemical quantification of iron (Fe) plaques on the shoots, rhizomes and roots of the seagrass Cymodocea serrulata (R. Brown) Ascherson collected from intertidal seagrass beds in Thailand. Plaques were observed on shoot bases, rhizomes and roots with the highest concentrations of iron in the plaques from the roots, reaching an average of 509 μmol gDW−1. Interestingly, the most negative stable sulphur isotope (δ34S) values, indicating H2S intrusion into the plants occurred in the sampling site with the most intense root oxidizing capacity, as indicated by a greater Fe plaque formation. These apparently contradictory findings may be attributed to oxidizing capacity of root tips and root hairs sufficient to promote Fe(III) deposition in the rhizosphere, preceding deposition of plaques on the roots. While this rhizosphere oxidation may result in a more efficient sulphide detoxification during the day photosynthetic phase, root tips and hairs may serve as vulnerable sites for sulphide intrusion at night. The presence of Fe plaque on C. serrulata roots and rhizomes reveals the complexity of seagrass–sediment interactions and deserves further attention to understand if this is a local phenomenon or a newly discovered adaptive mechanism in seagrasses.  相似文献   

12.
Rates of nitrogen fixation in seagrass beds (Zostera capricorni) were determined with15N and reduction of acetylene in intact cores of sediment and seagrass. There was good agreement in the results from the two techniques, with a molar ratio of 3∶1.9 ethylene: ammonia produced. Fixed nitrogen was rapidly utilized by the plants, with significant amounts of15N found in the roots and rhizomes and 50% of fixed15N apparently translocated to the leaves. Rates of fixation were high in summer (25 to 40 mg N m−2 day−1) and lower in winter (10 mg N m−2 day−1) and were estimated to supply between one-third and one-half of the nitrogen requirements of the seagrass. Rates of nitrogen fixation were greater in the light than in the dark, and in cores of intact seagrass than in defoliated cores, indicating that the bacteria were dependent on organic compounds secreted by the plants.  相似文献   

13.
The stable carbon isotopic composition (δ13C) measured in tree rings is a standard proxy for paleoclimate reconstructions and is increasingly being used as a paleophysiological proxy. To fully exploit the potential of tree ring δ13C proxy, atmospheric CO2 concentration and δ13C (δ13CO2) data are required to correct tree ring δ13C from the declining trend of δ13CO2 due to fossil fuel burning since 1850 CE, and to derive physiological parameters using biochemical models that link photosynthesis to δ13C. These atmospheric data are available from direct measurements or can be inferred from indirect proxies such as ice cores covering the Common Era (CE) at variable temporal resolutions. For almost two decades, tree-ring researchers have relied on a dataset derived from fitted linear regressions of ice core measurements available through the seminal McCarroll and Loader (2004) article for the 1850−2003 CE period. However, new calibrations and compilations of ice core data and direct measurements are now available as part of Earth System Modelling efforts which remain overlooked by the tree ring research community.Here, we present an overview of the new and freely available datasets and provide recommendations for their use in ecophysiology and paleoclimate research, that we expect will stimulate cross-disciplinary collaborations.  相似文献   

14.
A two-dimensional biomarker approach, using stable isotopes (δ13C, δ15N) and fatty acids, was used to evaluate differences both amongst and within benthic primary producer types (seagrass, fleshy red algae, calcareous red algae, brown algae, and seagrass periphyton) that are typical of the nearshore, temperate Australian region. The primary source of variance (as examined by permutational ANOVA) for all biomarkers examined was amongst primary producer types, as opposed to amongst species within type. δ13C showed a clear separation (Monte Carlo p < 0.05) between seagrass (range of means = −10.1 to −14.0‰) and macroalgae (−14.6 to −25.2‰), but could not differentiate amongst the algal types examined. Similarly, distinct δ15N signatures (p < 0.05) were found only for seagrass (range of means = 3.6-4.1‰) versus calcareous red algae (4.6-5.5‰), with all other types overlapping in their mean δ15N values. In contrast, multivariate analysis of fatty acid data (using Canonical Analysis of Principal coordinates; CAP) distinguished not only between seagrass and macroalgae, but also between red and brown algae (and to a limited extent between the calcareous and fleshy red algal types). The principal unsaturated fatty acids in the samples were C20 polyunsaturates (found primarily in the macroalgae and periphyton), and C18 mono- and polyunsaturates, with high proportions of 18:2n-6 and 18:3n-3 typical of the seagrasses. The C18 monounsaturate 18:1n-7 was one of the most diagnostic compounds for the red algae examined, being present in very low amounts in seagrass and virtually absent in the brown algae. Conversely, brown algae were high in 18:4n-3, with 20:4n-3 particularly diagnostic of the kelp Ecklonia radiata. In contrast to stable isotopes, fatty acids helped distinguish different algal groups, thereby providing support that a two-dimensional approach using stable isotopes and fatty acids is likely to provide the most useful tool to distinguish primary producers in food web structure.  相似文献   

15.
This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass‐associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.  相似文献   

16.
The study of a Posidonia australis sediment archive has provided a record of ecosystem dynamics and processes over the last 600 years in Oyster Harbour (SW Australia). Ecosystem shifts are a widespread phenomenon in coastal areas, and this study identifies baseline conditions and the time‐course of ecological change (cycles, trends, resilience and thresholds of ecosystem change) under environmental stress in seagrass‐dominated ecosystem. The shifts in the concentrations of chemical elements, carbonates, sediments <0.125 mm and stable carbon isotope signatures (δ13C) of the organic matter were detected between 1850s and 1920s, whereas the shift detected in P concentration occurred several decades later (1960s). The first degradation phase (1850s–1950s) follows the onset of European settlement in Australia and was characterized by a strong increase in sediment accumulation rates and fine‐grained particles, driven primarily by enhanced run‐off due to land clearance and agriculture in the catchment. About 80% of total seagrass area at Oyster Harbour was lost during the second phase of environmental degradation (1960s until present). The sharp increase in P concentration and the increasing contribution of algae and terrestrial inputs into the sedimentary organic matter pool around 1960s provides compelling evidence of the documented eutrophication of the estuary and the subsequent loss of seagrass meadows. The results presented demonstrate the power of seagrass sedimentary archives to reconstruct the trajectories of anthropogenic pressures on estuarine ecosystem and the associated regime shifts, which can be used to improve the capacity of scientists and environmental managers to understand, predict and better manage ecological change in these ecosystems.  相似文献   

17.
Capone DG  Budin JM 《Plant physiology》1982,70(6):1601-1604
Nitrogen fixation was associated with the rinsed roots and rhizomes of the seagrass, Zostera marina L. Nitrogenase activity (acetylene reduction) was greater on rhizomes compared to roots, and on older roots and rhizomes relative to younger tissue. Compared to aerobic assays, anaerobic or microaerobic conditions enhanced the rate of acetylene reduction by rhizomes with attached roots, with the highest activity (100 nanomoles per gram dry weight per hour) occurring at pO2 = 0.01 atmosphere. Addition of glucose, sucrose, or succinate also increased the rate of acetylene reduction under anaerobic conditions, with glucose providing the most stimulation. In one experiment, comparison of acetylene reduction assays with 15N2 incorporation yielded a ratio of about 2.6:1. Seagrass communities are thought to be limited by the availability of nitrogen and, therefore, nitrogenase activity directly associated with their roots and rhizomes suggests the possibility of a N2-fixing flora which may subsidize their nutritional demand for nitrogen.  相似文献   

18.
Historical coral skeleton (CS) δ18O and δ15N records were produced from samples recovered from sedimentary deposits, held in natural history museum collections, and cored into modern coral heads. These records were used to assess the influence of global warming and regional eutrophication, respectively, on the decline of coastal coral communities following the development of the Pearl River Delta (PRD) megacity, China. We find that, until 2007, ocean warming was not a major threat to coral communities in the Pearl River estuary; instead, nitrogen (N) inputs dominated impacts. The high but stable CS‐δ15N values (9‰–12‰ vs. air) observed from the mid‐Holocene until 1980 indicate that soil and stream denitrification reduced and modulated the hydrologic inputs of N, blunting the rise in coastal N sources during the early phase of the Pearl River estuary urbanization. However, an unprecedented CS‐δ15N peak was observed from 1987 to 1993 (>13‰ vs. air), concomitant to an increase of NH4+ concentration, consistent with the rapid Pearl River estuary urbanization as the main cause for this eutrophication event. We suggest that widespread discharge of domestic sewage entered directly into the estuary, preventing removal by natural denitrification hotspots. We argue that this event caused the dramatic decline of the Pearl River estuary coral communities reported from 1980 to 2000. Subsequently, the coral record shows that the implementation of improved wastewater management policies succeeded in bringing down both CS‐δ15N and NH4+ concentrations in the early 2000s. This study points to the potential importance of eutrophication over ocean warming in coral decline along urbanized coastlines and in particular in the vicinity of megacities.  相似文献   

19.
Cyclopoids were collected from 18 reservoirs in southern China during August (a wet month) and December (a dry month) of 2010 for the analysis of carbon and nitrogen stable isotopes (δ13CZoo and δ15NZoo). The objectives of this study were to examine whether δ13CZoo and δ15NZoo can be better indicators of primary productivity and trophic state than the stable isotope composition of suspended particulate organic matter (POM), and to evaluate the relationship between δ13CZoo and δ15NZoo and select environmental variables. The δ13CZoo in these reservoirs was enriched in August and depleted in December, and varied significantly along the continuum of trophic levels. By contrast, δ15NZoo was depleted in August and enriched in December, and did not increase significantly with an increase in trophic state. Both δ13CZoo and δ15NZoo were more strongly correlated with environmental factors than δ13CPOM and δ15NPOM were. In addition, more environmental factors were significantly correlated with δ13CZoo and the δ15NZoo than with δ13CPOM and δ15NPOM. When data from two seasons were pooled, δ13CZoo was strongly correlated with dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and the DIN:SRP ratio, while δ15NZoo was weakly correlated with nutrient concentrations. This study indicates that, compared to the stable isotope composition of POM, δ13CZoo is a better indicator of primary productivity and trophic state, while δ15NZoo may be used as a proxy for nitrogen sources in aquatic ecosystems.  相似文献   

20.
Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号