首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vegetation indices are widely employed to evaluate wetland ecological condition, and are expected to provide sensitive and specific detection of environmental change. Most studies evaluate the performance of condition assessment metrics in the context of the data used to calibrate them. Here we examined the temporal stability of the Florida Wetland Condition Index (FWCI) for vegetation of depressional forested wetlands by resampling sites in 2008 that were previously sampled to develop the FWCI in 2001. Our objective was to determine if FWCI, a composite of six vegetation-based metrics, provides a robust measure of condition given inter-annual variation in environmental conditions (i.e., rainfall) between sampling periods. To that end, we sampled 22 geographically isolated wetlands in north Florida that spanned a wide land use/land cover intensity gradient. Our results suggested the FWCI is robust. We observed no significant paired difference in FWCI across or within land use categories, and the relationship between FWCI in 2001 and 2008 was strong (r2 = 0.88, p < 0.001). This was despite surprisingly high composition change. Mean Jaccard community similarity within sites between years was 0.30, suggesting that most of the herbaceous taxa were replaced, possibly because of different antecedent rainfall conditions or sampling during different phenological periods; both are contingencies to which condition indices must be robust. We did observe some evidence of convergence toward the mean in 2008, with the fitted slope relating 2001 and 2008 FWCI scores significantly below one (0.63, 95% CI = 0.53–0.73). The most variable FWCI component metric was the proportional representation of obligate wetland taxa, suggesting that systematic changes may have been induced by different hydrologic conditions prior to sampling; notably, however, FWCI computed without this component still exhibited a slope significantly less than 1 (0.72, 95% CI = 0.61–0.88). Moreover, there was evidence that species lost from reference sites (higher condition) were replaced by taxa of lower floristic quality, while species lost from agricultural sites (consistently the lowest condition land use category) were replaced by species of higher quality. A significant positive association between FWCI and the ratio of coefficients of conservatism (CC) of species lost to those gained suggests some overfitting in FWCI development. However, despite modest evidence of overfitting, FWCI provides temporally consistent estimates of wetland condition, even under conditions of substantial taxonomic turnover.  相似文献   

2.
Land use and land cover change has a marked affect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic variables. To assess wetland condition, we have developed a Florida wetland condition index (FWCI) composed of indicators of community structure in the diatom, macrophyte, and macroinvertebrate assemblages for 216 wetlands (n = 74 depressional marsh, n = 118 depressional forested, n = 24 flowing water forested wetlands). Depressional wetlands located along a human disturbance gradient throughout Florida were sampled for each assemblage. Forested flowing water wetlands were sampled for macrophytes only. The landscape development intensity index (LDI) was used to quantify the human disturbance gradient. In general, human disturbance in adjacent areas had the greatest impact on depressional herbaceous wetlands, followed by depressional forested wetlands. Forested flowing water wetlands (i.e., forested strands and floodplain wetlands) were less affected by local conditions, with most of their changes in wetland condition correlated with alterations at the larger watershed scale. Strong correlations between the FWCIs and LDI index scores suggest that changes in community structure can be detected along a gradient of human land use activities adjacent to wetland ecosystems.  相似文献   

3.
Ecological indicators have gained increasing attention within the scientific community over the past 40 years. Several taxonomic groups have been used successfully as indicators including most prominently fish, invertebrates, plants, and birds because of their ability to indicate environmental changes. In the Laurentian Great Lakes region, there has been recent concern over the applicability of using indicators on a basin-wide scale due to species range restrictions and lake-based differences. The objective of this study was to determine the ability of the Index of Marsh Bird Community Integrity (IMBCI) to indicate land use disturbance surrounding coastal marshes of Georgian Bay and Lake Ontario. To meet this objective, we surveyed birds and vegetation at 14 marshes in Georgian Bay (low land use disturbance) and Lake Ontario (high land use disturbance). Even though Lake Ontario marshes were surrounded by significantly more altered land than Georgian Bay marshes, and had poorer water quality, we found significantly fewer birds in Georgian Bay marshes (mean = 8.2) compared to Lake Ontario (mean = 13.7) and no significant difference in IMBCI scores. This inconsistency could be due to vegetation differences affecting the strength of the index, because Georgian Bay wetlands had significantly more bulrush (Schoenoplectus spp.) and floating vegetation, while Lake Ontario wetland vegetation was taller and cattail-dominated (Typha spp.). These findings suggest that the IMBCI may not be useful on a basin-wide scale in the Great Lakes region in detecting human disturbance surrounding wetlands.  相似文献   

4.
The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal changes in hydrology and target indicator organism biology. To determine if benthic diatoms could be used as a multi-season biological indicator of wetland condition in isolated forested wetlands of Florida, USA, 11 wetlands were sampled twice during a 5-month period, once when dry, then again when hydrated. Sites sampled when dry had significantly higher diatom taxa richness at genus and species levels. Non-metric multidimensional scaling and multiple response permutation process analyses resulted in no obvious or significant wet/dry grouping of species or genus level abundance data. Five of seven diatom metrics of the Florida Wetland Condition Index (FWCI) for depressional forested wetlands were significantly linearly correlated (p < 0.05), while only one of seven metrics (a dissolved oxygen indicator) had a significantly different mean in paired t-test analyses. The final FWCI was significantly correlated (Pearson's = 0.85, p < 0.001) between wet and dry sites, and no difference was found in mean FWCI score between wet and dry sites (t = −1.98, p = 0.076), suggesting that with additional research, benthic diatoms may be used to monitor and assess wetland condition regardless of season or site hydrologic conditions.  相似文献   

5.
Natural wetlands play an important role in the global carbon cycle, and loss of dissolved carbon through water has been indicated as one of the most important carbon sources for riverine ecosystems. During the last century, a large natural wetland area was reported to be converted to other land use types such as rice paddy land around the world. In this study, we explored the dynamics of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) in two natural freshwater wetlands and a rice paddy field, which was reclaimed from the natural wetlands in the Sanjiang Plain, Northeastern China, during the growing season (May–October) of 2009. The DOC and DIC concentrations in the two ecosystems were significantly different (P < 0.05). The mean DOC concentrations during the growing season in the surface water of the Deyeuxia angustifolia and Carex lasiocarpa wetlands were 49.88 ± 5.44 and 27.97 ± 1.69 mg/L, respectively, while it was only 8.63 ± 2.54 mg/L in the rice paddy field. Specific ultra-violet light absorption at 254 nm (SUVA254) of DOC increased by an average of 19.54% in the surface water from the natural wetlands to rice paddy, suggesting that DOC mobilized in the natural wetlands was more aromatic than that in the rice paddy field. The mean DIC concentration in surface water of the rice paddy was 5.25 and 5.04 times higher than that in the natural D. angustifolia and C. lasiocarpa wetlands, respectively. The average ratio of DIC to dissolved total carbon (DTC) for the water sampled from the artificial drainage ditch in the rice paddy field was 61.82%, while it was 14.75% from the nearby channel of natural wetlands. The significant differences in dissolved carbon concentration in surface water and channels originating from different land use types suggested that reclamation of natural wetlands to rice paddy field would reduce DOC runoff and increase the DIC concentration to adjacent watersheds. Our study results for the changed pattern in dissolved carbon after the natural wetland was transformed to paddy field could have important implications for studying the impacts of the large-scale land use change to carbon cycle and management.  相似文献   

6.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

7.
The objective of this study was to evaluate the effect of sex composition of the group of lambs before puberty on later sexual performance in Awassi ram lambs. Thirteen Awassi ram lambs of the same age were raised in either all-male group (n = 7) or in a group mixed with females (n = 6) from weaning to puberty. Blood samples, body weights (BW) and scrotal circumferences (SC) of ram lambs were recorded between eight and 10 months of age. Sexual performance testing was performed at 9 months of age by individually exposing ram lambs to oestrous females on five occasions. Body weight and SC were greater (P < 0.01) in the all-male compared with the mixed group. Plasma testosterone concentrations were not influenced (P > 0.05) by treatment. Plasma testosterone concentrations were significantly correlated (P  0.05) with BW (r = 0.3) and SC (r = 0.4). No treatment effects were detected regarding bouts of leg-kicking. Bouts of anogenital sniffing, the frequency of mount attempts and mounting frequency were greater (P < 0.05) in the all-male group. Even though the frequency of raising the fat tail of females was similar between the two treatments, the mixed group tended to be (P = 0.08) more efficient in doing so than the all-male group (higher tail raising/mount). Results of the current study indicate that mixing groups of ram and ewe lambs before puberty may be insufficient to improve later sexual performance of ram lambs.  相似文献   

8.
Three categories of wetland assessment methods have been recognized by the United States Environmental Protection Agency, including Level 1—Landscape-scale Assessment; Level 2—Rapid Field Methods; and Level 3—Intensive Biological and Physico–Chemical Measures. This study incorporates wetland assessment methods for each assessment level, including the Level 1 Landscape Development Intensity (LDI) index, Level 2 Wetland Rapid Assessment Procedure (WRAP), and Level 3 Florida Wetland Condition Index (FWCI). Using a neighborhood analysis in Geographic Information Systems (GIS), an LDI index map was created using 1995 land use, creating a calculated LDI index value for each 30 m2 area in Florida. Level 1–3 assessment procedures were employed at 193 palustrine emergent (n = 75) and forested (n = 118) wetlands. Significant correlations were found among the multiple Level 1–3 assessment procedures using the nonparametric Spearman’s correlation coefficient for pair-wise comparisons of LDI and WRAP, LDI and diatom FWCI, WRAP and diatom FWCI, LDI and macrophyte FWCI, WRAP and macrophyte FWCI, LDI and macroinvertebrate FWCI, and WRAP and macroinvertebrate FWCI (|r| > 0.50, P < 0.01). Defining the relationship between Level 1–3 assessment methods may be used to estimate the more intensive and species assemblage-specific Level 3 FWCI assessment scores for wetlands with Level 1 or Level 2 scores. Inferences can then be made as to wetland condition based on established correlations with intensive assessment methods.  相似文献   

9.
Wetland creation is a common practice for compensatory mitigation in the United States. Vegetation attributes have been used as a quick measure of mitigation success in most post-creation monitoring, while little attention has been paid to soils that provide the substrate for flora and fauna to establish and develop. Created wetland soils are often found not indicative of ‘hydric soil’ with a lack of development of physicochemical properties (i.e., bulk density, moisture content, and carbon and nitrogen contents) comparable to those in natural wetlands. Moreover, soil bacterial communities are rarely examined though they are integrally involved in biogeochemical functions that are critical for ecosystem development in created wetlands. We analyzed soil physicochemistry and profiled soil bacterial community structure using amplicon length heterogeneity polymerase chain reaction (LH-PCR) of 16S ribosomal DNA in three relatively young wetlands (<10 years old) created in the Piedmont region of Virginia. We examined the data by site and by specific conditions of each site (i.e., induced microtopography and hydrologic regime). Multidimensional scaling (MDS) and analysis of similarity (ANOSIM) showed clear clustering and significant differences both in soil physicochemistry (Global R = 0.70, p = 0.001) and in soil bacterial community profiles (Global R = 0. 77, p = 0.001) between sites. Soil physicochemistry (Global R = 1, p = 0.005) and bacterial community structure (Global R = 0.79, p = 0.005) of soils significantly differed by hydrologic regime within a wetland, but not by microtopography treatment. A significant association was found between physicochemistry and bacterial community structure in wetland soils, revealing a close link between two attributes (ρ = 0.39, p = 0.002). C/N (carbon to nitrogen) ratio was the best predictor of soil bacterial community patterns (ρ = 0.56, p = 0.001). The diversity of soil bacterial community (Shannon's H′) differed between sites with a slightly higher diversity observed in a relatively older created wetland, and seemed also fairly determined by hydrologic regime of a site, with a relatively dry site being more diverse.  相似文献   

10.
Coastal mangroves have the potential to improve the water quality of urban and rural runoff before it is discharged into adjacent coastal bays and oceans; but they also can be impaired by excessive pollutants from upstream. Nutrients (phosphorus and nitrogen), salinity, and other water quality parameters were measured in five mangrove tidal creeks in different hydrogeomorphic and urbanization settings during high and low tides over a calendar year of wet (June and August 2015) and dry (February and April 2016) seasons in the Greater Naples Bay area in Southwest Florida, USA. Nutrient concentrations (ave. ± std error) in the tidal creeks were 0.055 ± 0.008 mg-P/L for total phosphorus (TP) and 0.610 ± 0.020 mg-N/L for total nitrogen (TN), with an average N:P ratio of 11.4:1. Average wet season TP (0.075 ± 0.010 mg-P/L) was significantly higher than the dry season TP (0.033 ± 0.003 mg-P/L; p < 0.01, f = 15.17, fcrit = 3.89) and the average wet season TN (0.75 ± 0.03 mg-N/L) was significantly higher than dry season TN (0.52 ± 0.02 mg/L; p < 0.01, f = 64.14, fcrit = 3.89), suggesting that urban stormwater runoff is directly or indirectly affecting the nutrient conditions in these mangroves. Significant differences in nutrient concentrations between low tide and high tide were not found for either TP (p = 0.43, f = .63, fcrit = 3.88) or TN (p = 0.20, f = 1.66, fcrit = 3.89). These differences were confirmed by a PCA and cluster analyses, which found differences to be seasonal. We could not conclude from these results whether these five mangrove wetlands were sources nor sinks of nutrients based simply on the measurement of nutrient concentrations. But we illustrated that nutrient concentrations were indicators of the mangroves’ hydrogeomorphic settings, their tidal fluxes from Naples Bay, and the Bay's upstream watersheds, and less by direct urban runoff.  相似文献   

11.
The aim of the present study was to investigate the contribution of the single photon emission computed tomography/computed tomography (SPECT/CT) in cancer patients and to evaluate its ability to correctly classify indeterminate lesions on planar bone scintigraphy (PBS).MethodsFrom November 2006 to August 2007, all patients with confirmed malignancy, whose PBS showed indeterminate lesions, underwent without delay a SPECT/CT. The study included 120 patients (67 men, 53 women), with a mean age of 69 ± 12 years (range 42–96 years). The patients with obvious metastases, important pains or who did not accept the examination were excluded from the study. The location of the lesions was described either as precise, probable or indeterminate. The lesions were classified either as definitely malignant, definitely benign or indeterminate.ResultsBreast, prostate, lung and kidney neoplasms represented approximately 80% of all cancers. The PBS highlighted 267 lesions of location either as precise (n = 29), probable (n = 129) or indeterminate (n = 109), classified either as definitely malignant (n = 28), definitely benign (n = 27) or indeterminate (n = 212). The SPECT/CT revealed 440 lesions, of location either as precise (n = 353), likely (n = 39) or indeterminate (n = 48), classified either as definitely malignant (n = 84), definitely benign (n = 305) or indeterminate (n = 51). Thoracic and lumbar spine and pelvis were the locations of 79% of the scintigraphic lesions and of 88% of the osseous metastases. SPECT/CT modified the final report of 80 patients, by excluding from metastases (n = 2), by showing metastases (n = 23) and by showing the benign character of indeterminate lesions (n = 55). Moreover, 69 patients out of 120 (> 57%) had an evolution confirmed with 35 true positives, 31 true negatives, one false negative and two patients with indeterminate lesions on SPECT/CT, without osseous metastasis.ConclusionThe assessment of the indeterminate scintigraphic lesions of oncologic patients benefits from the SPECT/CT. The lesion-based analysis showed that the SPECT/CT detected more lesions (+64%) and correctly classified 88% of the detected lesions. The patient-based analysis highlighted that SPECT/CT modified the final report for more than 66% of the patients. The follow-up showed that SPECT/CT correctly classified for more than 95% of the patients.  相似文献   

12.
There has been less understanding of relations of microbial community patterns with plant diversity in constructed wetlands. We conducted a single full-scale subsurface vertical flow constructed wetland (SVFCW, 1000 m2) study focusing on domestic wastewater processing. This study measured the size and structure of microbial community using fumigation extraction and BIOLOG Ecoplate? techniques, to examine the effects of macrophyte diversity on microbial communities that are critical in treatment efficiency of constructed wetlands. We also determined the relationship of plant diversity (species richness) with its biomass production under disturbance of the same wastewater supply. Linear regression analysis showed that plant biomass production strongly correlated with plant species richness (R = 0.407, P < 0.001). Increase in plant species richness increased microbial biomass carbon and nitrogen (R = 0.494, P < 0.001; R = 0.465, P < 0.001) and utilization of amino acids on Ecoplates (R = 0.235, P = 0.03), but limited the utilization of amine/amides (R = ?0.338, P = 0.013). Principal components analysis (PCA) showed that the diversity and community-level physiological profiles (CLPP) of microbial community at 168 h of incubation strongly depended on the presence or absence of plant species in the SVFCW system, but not on the species richness. This is the first step toward understanding relations of plant diversity with soil microbial community patterns in constructed wetlands, but the effect of species diversity on microbial community should be further studied.  相似文献   

13.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

14.
We report the effects of ATP and Mg2+ on the activity of intracellular chloride channels. Mitochondrial and lysosomal membrane vesicles isolated from rat hearts were incorporated into bilayer lipid membranes, and single chloride channel currents were measured. The observed chloride channels (n = 112) possessed a wide variation in single channel parameters and sensitivities to ATP. ATP (0.5–2 mmol/l) modulated and/or inhibited the chloride channel activities (n = 38/112) in a concentration-dependent manner. The inhibition effect was irreversible (n = 5/93) or reversible (n = 15/93). The non-hydrolysable ATP analogue AMP-PNP had a similar inhibition effect as ATP, indicating that phosphorylation did not play a role in the ATP inhibition effect. ATP modulated the gating properties of the channels (n = 6/93), decreased the channels' open dwell times and increased the gating transition rates. ATP (0.5–2 mmol/l) without the presence of Mg2+ decreased the chloride channel current (n = 12/14), whereas Mg2+ significantly reversed the effect (n = 4/4). We suggest that ATP-intracellular chloride channel interactions and Mg2+ modulation of these interactions may regulate different physiological and pathological processes.  相似文献   

15.
《Cytokine》2015,71(2):194-197
Osteopontin (OPN) acts as an osteoclast activator, a proinflammatory cytokine, and a chemokine attracting histiocytes/monocytes and is abundantly expressed in Langerhans cell histiocytosis (LCH). We investigated whether serum OPN levels are related to disease types in LCH. Fifty-eight newly diagnosed LCH patients were studied; eight with risk organ (liver, spleen and/or hematopoietic) involvements positive multisystem (MS+) disease, 27 with risk organ involvement negative multisystem (MS−) disease and 23 with single system (SS) disease. Pediatric patients with non-inflammatory disease (n = 27) were used as controls. All of patients with MS+ disease were younger than 3 years. Serum OPN levels and 44 kinds of humoral factors were measured by ELISA and Bio-Plex suspension array system, respectively. In the patients younger than 3 years, the median serum OPN level (interquartile range) was 240.3 ng/ml (137.6–456.0) in MS+ (n = 8); 92.7 ng/ml (62.0–213.8) in MS− (n = 14) and 72.5 ng/ml (55.6–94.0) in SS (n = 9) and 74.4 ng/ml (42.2–100.0) in control (n = 12). The OPN values were significantly higher in the MS+ group than the MS−, SS and control groups (p = 0.044, p = 0.001 and p = 0.002, respectively), but not different between the MS−, SS and control groups. In the patients older than 3 years, the median level of serum OPN (IQR) was 56.2 ng/ml (22.9–77.5) in MS− (n = 13), 58.9 ng/ml (31.0–78.7) in SS (n = 14) and 41.9 (28.9–54.1) in control (n = 15). These values did not differ significantly between each group. The serum OPN levels were positively correlated with the serum IL-6, CCL2, IL-18, IL-8 and IL-2 receptor concentration. OPN may be involved in risk organ dissemination and poor prognosis of LCH through the function as inflammatory cytokine/chemokine.  相似文献   

16.
BackgroundBariatric surgery is widely performed to improve obesity-related disorders, but can lead to nutrient deficiencies. In this study we examined serum trace element concentrations before and after bariatric surgery.MethodsWe obtained serum trace element concentrations by inductively coupled plasma-mass spectrometry (ICP-MS) method in 437 patients (82% women, median preoperative body-mass index 46.7 kg/m2 [interquartile range 42–51]) undergoing either gastric banding (22.7%), sleeve gastrectomy (20.1%), or gastric bypass (57.3%) procedures. Trace element data were available for patients preoperatively (n = 44); and 3 (n = 208), 6 (n = 174), 12 (n = 122), 18 (n = 39), 24 (n = 44) and 36 months (n = 14) post-operatively. All patients were recommended to take a multivitamin-mineral supplement after surgery.ResultsCopper deficiency was found in 2% of patients before surgery; and after surgery deficiency rates ranged from 0 to 5% with no significant change in median concentrations during follow-up (p = 0.68). Selenium deficiency was reported in 2% of patients before surgery; and after surgery deficiency rates ranged from 11 to 15% with a near-significant change in median concentrations (p = 0.056). Zinc deficiency was reported in 7% before surgery; and after surgery deficiency rates ranged from 7 to 15% with no significant change in median concentrations (p = 0.39).ConclusionsIn bariatric surgery patients recommended to take multivitamin-mineral supplements, serum copper, zinc and selenium concentrations were mostly stable during the first years after bariatric surgery. There was a possible tendency for selenium concentrations to decline during the early postoperative period.  相似文献   

17.
Thirty-three Holstein-Friesian cows were followed from 14 days pre partum until the fourth ovulation post partum. Housing conditions and basic ration were identical for all animals. Concentrates were individually supplemented according to the daily milk production level, using two different types of protein rich concentrates: soybean meal and rapeseed meal. Soybean and rapeseed meal are known to be respectively high and low in isoflavones. Cows were randomly divided into three groups and blocked for parity. Group I (n = 11) was supplemented with soybean meal and acted as control group. Groups II (n = 11) and III (n = 11) were respectively supplemented with soybean and rapeseed meal and were subjected to a biopsy sampling of the corpus luteum at day 9 of the first three postpartal estrous cycles.Soybean meal supplementation to lactating dairy cows (1.72 kg on average) induced an increase in the blood concentration of equol, dihydrodaidzein, o-desmethylangolensin in both soy groups and resulted in a reduced area occupied by steroidogenic (P = 0.012) and endothelial cells (P = 0.0007) in the luteal biopsies. Blood concentrations of equol and glycitein were negatively correlated with the areas occupied by steroidogenic (r = −0.410 with P = 0.0002, respectively r = −0.351 with P = 0.008) and endothelial cells (r = −0.337 with P = 0.01, respectively r = −0.233 with P = 0.085) in the 3 first estrous cycles. The latter however did not affect the diestrous peripheral blood progesterone concentration.  相似文献   

18.
There is a major need to understand the historical condition and chemical/biological functions of the ecosystems following a conversion of wetlands to agricultural functions. To better understand the dynamics of soil total organic carbon (TOC) and phosphorus (P) during beef cattle pastures to wetland reconversion, soil core samples were collected from the beef cattle pasture and from the natural wetland at Plant City, FL, during five summer seasons (2002–2007). The levels of TOC and soil P were significantly affected by changing land use and hydrology. Draining natural wetlands to grazed pastures resulted in very pronounced reduction of TOC from 180.1 to 5.4 g g?1. Cumulative concentrations of total phosphorus (TP) in soils (1134 mg kg?1) under drained condition are two to three times lower than those in soils (2752 mg kg?1) under flooded condition over the periods of land use reconversion. There was a declining trend (r = 0.82**; p  0.01) in total soil P from natural wetland (763 mg kg?1) to altered pastures (340 mg kg?1), largely as organic-bound P (natural wetland, 48%; grazed pastures, 44%; altered pastures, 29%). These results are important in establishing baseline information on soil properties in pasture and wetland prior to restoring and reconverting pasture back to wetland conditions. The results further suggest that changes in soil properties due to changing land use and hydrologic conditions (drying and re-wetting) could be long lasting.  相似文献   

19.
BackgroundAnalysis of sialic acid (SA) metabolites in cerebrospinal fluid (CSF) is important for clinical diagnosis. In the present study, a high-performance liquid chromatography–tandem mass spectrometry (HPLC/MS/MS) method for free sialic acid (FSA) and total sialic acid (TSA) in human CSF was validated.MethodsThe method utilized a simple sample-preparation procedure of protein precipitation for FSA and acid hydrolysis for TSA. Negative electrospray ionisation was used to monitor the transitions m/z 308.2  87.0 (SA) and m/z 311.2  90.0 (13C3-SA). Conjugated sialic acid (CSA) was calculated by subtracting FSA from TSA. We established reference intervals for FSA, TSA and CSA in CSF in 217 control subjects. The method has been applied to patients’ samples with known differences in SA metabolites like meningitis (n = 6), brain tumour (n = 2), leukaemia (n = 5), and Salla disease (n = 1).ResultsLimit of detection (LOD) was 0.54 μM for FSA and 0.45 μM for TSA. Intra- and inter-assay variation for FSA (21.8 μM) were 4.8% (n = 10) and 10.4% (n = 40) respectively. Intra- and inter-assay variation for TSA (35.6 μM) were 9.7% (n = 10) and 12.8% (n = 40) respectively. Tested patients showed values of TSA above established reference value.ConclusionThe validated method allows sensitive and specific measurement of SA metabolites in CSF and can be applied for clinical diagnoses.  相似文献   

20.
Several ecological indices have been developed to evaluate the wetland quality in the Laurentian Great Lakes. One index, the water quality index (WQI) can be widely applied to wetlands and produces accurate measurements of wetland condition. The WQI measures the degree of water quality degradation as a result of nutrient enrichment and road runoff. The wetland fish index (WFI), wetland zooplankton index (WZI), and the wetland macrophyte index (WMI), are all derived from the statistical relationships of biotic communities along a gradient of deteriorating water quality. Compared to the WQI, these indices are less labor-intensive, cost less, and have the potential to produce immediate results. We tested the relative sensitivity of each biotic index for 32 Great Lakes wetlands relative to the WQI and to each other. The WMI (r2 = 0.84) and WFI (r2 = 0.75) had significant positive relationships (P < 0.0001) with the WQI in a linear and polynomial fashion. Slopes of the WMI and WFI were similar when comparing the polynomial regressions (ANCOVA; P = 0.117) but intercepts were significantly different (P = 0.004). The WZI had a positive relationship with the WQI in degraded wetlands and a negative relationship in minimally impacted wetlands. The strengths and weaknesses of each index can be explained by the interactions among fish, zooplankton, aquatic plants and water chemistry. The distribution of different species indicative of low and high quality in each index provides insight into the relative wetland community composition in different parts of the Great Lakes and helps to explain the differences in index scores when different organisms are used. Our findings suggest that the WMI and WFI produce comparable results but the WZI should not be used in the minimally impacted wetlands without further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号