首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PcG (polycomb group)蛋白作为一种表观遗传修饰系统,在动物和植物中具有 保守性.从功能上讲,PcG蛋白可以分为PRC1(polycomb repressive complex 1)和 PRC2(polycomb repressive complex 2)两个核心蛋白复合体. PRC2含有组蛋白甲 基化酶的活性,而PRC1在泛素连接酶E3介导的组蛋白泛素化中发挥作用,二者通过对 组蛋白的修饰控制靶基因转录. 近来研究表明,PcG蛋白对干细胞数量维持和命运转变 有重要的调控作用,其成员表达失调或缺失导致许多恶性肿瘤的发生或导致植物细胞 丧失分化能力、形成愈伤组织. 本文简要综述了PcG蛋白的组成及其在干细胞调控中 的作用.  相似文献   

2.
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes—polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.  相似文献   

3.
4.
5.
Epigenetic complexes play an essential role in regulating chromatin structure, but information about their assembly stoichiometry on chromatin within cells is poorly understood. The cellular assembly stoichiometry is critical for appreciating the initiation, propagation, and maintenance of epigenetic inheritance during normal development and in cancer. By combining genetic engineering, chromatin biochemistry, and single-molecule fluorescence imaging, we developed a novel and sensitive approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) to enable investigation of the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was validated by using chromatin complexes with known stoichiometry. The stoichiometry of subunits within a polycomb complex and the assembly stoichiometry of polycomb complexes on chromatin have been extensively studied but reached divergent views. Moreover, the cellular assembly stoichiometry of polycomb complexes on chromatin remains unexplored. Using Sm-ChIPi, we demonstrated that within mouse embryonic stem cells, one polycomb repressive complex (PRC) 1 associates with multiple nucleosomes, whereas two PRC2s can bind to a single nucleosome. Furthermore, we obtained direct physical evidence that the nucleoplasmic PRC1 is monomeric, whereas PRC2 can dimerize in the nucleoplasm. We showed that ES cell differentiation induces selective alteration of the assembly stoichiometry of Cbx2 on chromatin but not other PRC1 components. We additionally showed that the PRC2-mediated trimethylation of H3K27 is not required for the assembly stoichiometry of PRC1 on chromatin. Thus, these findings uncover that PRC1 and PRC2 employ distinct mechanisms to assemble on chromatin, and the novel Sm-ChIPi technique could provide single-molecule insight into other epigenetic complexes.  相似文献   

6.
PcG蛋白主要以PRC1和PRC2两组复合物的形式存在,通过参与核小体组蛋白翻译后修饰等机制,发挥调控靶基因转录的功能. PRC1复合体中的RING1A/B具有使组蛋白H2AK119泛素化的活性;PRC2中的EZH2具有使组蛋白H3K27三甲基化的活性,形成PRC1锚定到核小体上的位点. PcG蛋白的表达特征具有发育阶段和细胞类型时空特异性. 长链非编码RNA等反式作用因子能募集PcG蛋白结合于靶基因,发挥靶向作用. 本文就PcG蛋白功能、构成的时空特异性、募集机制及其与疾病发生的关系研究进展做一综述.  相似文献   

7.
8.
9.
The essential histone variant H2A.Z localises to both active and silent chromatin sites. In embryonic stem cells (ESCs), H2A.Z is also reported to co-localise with polycomb repressive complex 2 (PRC2) at developmentally silenced genes. The mechanism of H2A.Z targeting is not clear, but a role for the PRC2 component Suz12 has been suggested. Given this association, we wished to determine if polycomb functionally directs H2A.Z incorporation in ESCs. We demonstrate that the PRC1 component Ring1B interacts with multiple complexes in ESCs. Moreover, we show that although the genomic distribution of H2A.Z co-localises with PRC2, Ring1B and with the presence of CpG islands, H2A.Z still blankets polycomb target loci in the absence of Suz12, Eed (PRC2) or Ring1B (PRC1). Therefore we conclude that H2A.Z accumulates at developmentally silenced genes in ESCs in a polycomb independent manner.  相似文献   

10.
11.
How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling--p38α and EZH2--invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate.  相似文献   

12.
13.
During organogenesis, tissues expand in size and eventually acquire consistent ratios of cells with dazzling diversity in morphology and function. During this process progenitor cells exit the cell cycle and execute differentiation programs through extensive genetic reprogramming that involves the silencing of proliferation genes and the activation of differentiation genes in a step-wise temporal manner. Recent years have witnessed expansion in our understanding of the epigenetic mechanisms that contribute to cellular differentiation and maturation during organ development, as this is a crucial step toward advancing regenerative therapy research for many intractable disorders. Among such epigenetic programs, the developmental roles of the polycomb repressive complex 2 (PRC2), a chromatin remodeling complex that mediates silencing of gene expression, have been under intensive examination. This review summarizes recent findings of how PRC2 functions to regulate the transition from proliferation to differentiation during organogenesis and discusses some aspects of the remaining questions associated with its regulation and mechanisms of action.  相似文献   

14.
Dobreva G  Braun T 《Cell Stem Cell》2010,7(4):422-424
Tumor necrosis factor-α (TNF-α) has complex effects on muscle regeneration. In this issue of Cell Stem Cell, Palacios et al. (2010) report that TNF-α-activated p38α kinase controls differentiation of muscle stem cells by promoting polycomb repressive complex 2 (PRC2) silencing of the Pax7 promoter.  相似文献   

15.
16.
17.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   

18.
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号