首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
The goals of this study, were to synthesize N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide (1c) and determine its antinociceptive properties. The effect of clonidine on 1c antinociception and the involvement of opioid, α2-adrenergic, and I2 imidazoline receptors in 1c antinociception were studied. Also examined was the effect of an endothelin ETA receptor antagonist on 1c antinociception. Synthesis of 1c was accomplished in two steps using modifications of previously reported methods. Antinociceptive (tail-flick and hot-plate) latencies were measured in male Swiss Webster mice treated with 1c; antagonists + 1c; clonidine + 1c; or antagonists + clonidine + 1c. Mice were pretreated with naloxone (opioid antagonist), yohimbine (α2-adrenoceptor antagonist), idazoxan (α2-adrenoceptor/I2-imidazoline antagonist), BU224 (I2-imidazoline antagonist) or BQ123 (endothelin ETA receptor antagonist) to study the involvement of these receptors. Compound 1c produced a dose-dependent increase in antinociceptive latencies; ED50 values were 0.15 mg/kg and 0.16 mg/kg, respectively, in the tail flick and hot plate tests. Naloxone, but not yohimbine, idazoxan or BU224, blocked 1c antinociception. Neither clonidine nor BQ123 potentiated 1c antinociception. Results demonstrate that 1c is 15-times more potent than morphine. The antinociceptive effect of 1c is mediated through opioid receptors. The α2-adrenergic, I2-imidazoline and endothelin ETA receptors are not involved in 1c antinociception.  相似文献   

2.
Endothelin (ET) is a potent vasoconstrictor peptide implicated in numerous human diseases, including ischemic cardiomyopathy (ICM). ET binds to receptors ETA and ETB. Specific ET receptors were characterized in left atria of patients with end-stage heart failure due to ischemic cardiomyopathy (ICM) (n = 9) and healthy controls (n = 9). Saturation assays revealed a Kd and Bmax of 28 ± 8 pM and 87 ± 22 fmol mg?1 of protein, respectively, from healthy atria and 50 ± 9 pM and 162 ± 19 fmol mg?1 of protein, respectively, from diseased atria (p < 0.05). For competition studies, we obtained a percentage of ETA receptors using BQ123, 55% ± 5 and 66% ± 4 in healthy and diseased atria, respectively (p < 0.05). The percentage of ETB using BQ3020 was 55% ± 14 in healthy and 59% ± 10 in diseased atria. Microautoradiography studies showed a greater number of ET receptors, predominately ETA, existed in the myocardial layer of diseased atria compared with healthy atria. The percentage of occupied area was greater in the endocardium than the epicardium in diseased atria. These results showed an increase in the ETA/ETB receptor system in the failing human heart compared with the non-failing human heart.  相似文献   

3.
The endothelins (ET) peptide family consists of ET-1, ET-2, ET-3, and sarafotoxin (s6C, a snake venom) and their actions appears to be different among isoforms. The aim of this study was to compare the secretagogue effect of ET-1 on atrial natriuretic peptide (ANP) secretion with ET-3 and evaluate its physiological meaning. Isolated nonbeating atria from male Sprague-Dawley rats were used to evaluate stretch-activated ANP secretion in response to ET-1, ET-2, ET-3, and s6C. Changes in mean blood pressure (MAP) were measured during acute injection of ET-1 and ET-3 with and without natriuretic peptide receptor-A antagonist (A71915) in anesthetized rats. Changes in atrial volume induced by increased atrial pressure from o to 1, 2, 4, or 6 cm H2O caused proportional increases in mechanically-stimulated extracellular fluid (ECF) translocation and stretch-activated ANP secretion. ET-1 (10 nM) augmented basal and stretch-activated ANP secretion in terms of ECF translocation, which was blocked by the pretreatment with ETA receptor antagonist (BQ123, 1 μM) but not by ETB receptor antagonist (BQ788, 1 μM). ETA receptor antagonist itself suppressed stretch-activated ANP secretion. As compared to ET-1- induced ANP secretion (3.2-fold by 10 nM), the secretagogue effects of ANP secretion by ET-2 was similar (2.8-fold by 10 nM) and ET-3 and s6C were less potent (1.7-fold and 1.5-fold by 100 nM, respectively). Acute injection of ET-1 or ET-3 increased mean blood pressure (MAP), which was augmented in the presence of natriuretic peptide receptor-A antagonist. Therefore, we suggest that the order of secretagogue effect of ET family on ANP secretion was ET-1  ET-2 >> ET-3 > s6C and ET-1-induced ANP secretion negatively regulates the pressor effect of ET-1.  相似文献   

4.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   

5.
In most species of vertebrates, teeth play a central role in the long-term performance of individuals. However, patterns of tooth development have been little investigated as an indicator of animal performance. We filled this gap using data collected during long-term capture-mark-recapture monitoring of 1152 roe deer fawns at Chizé, western France. This population fluctuated greatly in size during the 27 years of monitoring, offering a unique opportunity to assess how the eruption patterns of front teeth perform as indicator of animal performance. We used three indices of the eruption of permanent front teeth, the simplest being whether or not incisor I2 has erupted, and the most complex being a 12-level factor distinguishing the different stages of tooth eruption. We also assessed the relevance of these indices as compared to fawn body mass, a widely used indicator of animal performance of deer populations. Dental indices and body mass were positively correlated (all r > 0.62). Similarly to body mass, all indices based on tooth eruption patterns responded to changes of population size and can be reliably used to assess the relationship between roe deer and their environment. We found a linear decrease in body mass with increasing population size (r2 = 0.54) and a simultaneous delay in tooth development (r2 = 0.48–0.55 from the least to the most accurate indicator). However, tooth development would be not further delayed in years with the highest densities (>15 adult roe deer/100 ha). A path analysis supported the population density effect on tooth eruption patterns being mainly determined by the effect of population size on body mass. Our study provides managers with simple indices (e.g., presence-absence of I2) that provide a technically more easy way to standardize measurements of deer density-dependent responses over large geographical and temporal scales than would be possible with body mass.  相似文献   

6.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

7.
Looming water scarcity and climate change pose big challenges for China's food security. Previous studies have focus on the impacts of climate change either on agriculture or on water resources. Few studies have linked water and agriculture together in the context of climate change, and demonstrated how climate change will affect the amount of water used to produce per unit of crop, or virtual water content (VWC). We used a GIS-based Environmental Policy Integrated Climate (GEPIC) model to analyze the current spatial distribution of VWC of various crops in China and the impacts of climate change on VWC in different future scenarios. The results show that C4 crops (e.g. irrigated maize with a VWC of 0.73 m3 kg 1 in baseline) generally have a lower VWC than C3 crops (e.g. irrigated wheat with a VWC of 1.1 m3 kg 1 in baseline), and the VWC of C4 crops responds less sensitively to the CO2 concentration change in future climate scenarios. Three general change trends exist for future VWC of crops: continuous decline (for soybean and rice without considering CO2 concentration changes) and continuous increase (for rice with considering CO2 concentration changes) and first-decline-then-increase (other crop-scenario combinations). The trends reflect the responses of different crops to changes in precipitation, temperature as well as CO2 concentration. From south to north along the latitude, there is a high-low-high distribution trend of the aggregated VWC of the crops. Precipitation and temperature changes combined can lead to negative effects on crop yield and higher VWC particularly in the far future e.g. the 2090s, but when CO2 concentration change is taken into consideration, it is likely that crop yield will increase and crop VWC will decrease for the whole China. Integrated effects of precipitation, temperature and CO2 concentration changes will benefit agricultural productivity and crop water productivity through all the future periods till the end of the century. Hence, climate change is likely to benefit food security and help alleviate water scarcity in China.  相似文献   

8.
Previous studies suggest that the sensitivity of leaf mitochondrial respiration and the pool of soluble sugars to water stress could influence the response of leaf isoprene emission to drought by affecting the availability of extra-chloroplastic carbon for isoprene synthesis. We measured rates of isoprene emission and CO2 exchange, and the concentration of nonstructural carbohydrates in leaves of Quercus pubescens Willd. seedlings subjected to either normal watering (control plants, C) or drought (droughted plants, D). Stopping of watering caused predawn leaf water potential (Ψpd) to decline between −2.3 and −5.1 MPa among D plants, whereas Ψpd remained higher than −0.45 MPa in C plants. Isoprene emission (Is), net CO2 assimilation (An) and dark mitochondrial respiration (Rd) decreased with increasing water deficit, with declines in these variables relative to the respective means of C plants being An > Is > Rd. This resulted in positive pairwise correlations between the three variables. The concentration of nonstructural carbohydrates did not change between treatments, but the concentration of soluble sugars increased and that of starch decreased in D plants as compared with C plants. As a consequence, there was a negative correlation between Is and the concentration of soluble sugars, which supports a limited use of cytosolic sugars in sustaining isoprene synthesis at high to severe water stress. Our data also indicate that competition between Is and Rd for the same carbon substrates had little importance for isoprene emission at high to severe water stress, as compared to the overall constraint on isoprene metabolism probably imposed by the shortage of photosynthetic carbon, energy and reducing equivalents.  相似文献   

9.
The success of interpolation techniques relies heavily on the density and regularity of field reference data points. For instance temperature interpolations in the Arctic are hampered by few and scattered meteorological stations. The major objective of this study is to analyze the spatial relationship between plants, defined in terms of an index of thermophily (It) and temperature distribution. The study area is located in Kongsfjorden, northwest Spitsbergen (Svalbard). A systematic recording of floristic data covering the study area was made within quadrates of 1 km × 1 km (93 units). For each of them, the It was calculated. It provides a synthetic measure by which plants are taken as temperature indicators at a long time scale. Temperature values were recorded by means of 39 temperature loggers during the summer 2000. The model for spatial interpolation of temperature was developed using multiple regression of remote sensed data (Landsat TM) and topographical features derived from a digital elevation model (DEM). Continuous temperature layers were calculated at a spatial resolution of 50 m × 50 m, and aggregated to a resolution of 1 km × 1 km in order to correspond with the observed botanical units. Different maps were produced showing spatial distribution of the modelled temperature and It. Correlations between the It and temperature values derived from the modelled temperature layers were systematically explored. Correlation between the It and temperatures works well as standard deviation of residues is 0.7 °C only. Highest correlations (r) of It and the spatial distribution of temperature were obtained for: (a) maximum average temperature for August, excluding all areas higher than 100 m above sea level (0.75), (b) average daily maximum temperature for July–October (0.67), (c) average temperature for July and August (0.64, 0.65), and (d) when temperature range is >8 °C (0.55). Areas with low correlations between It and temperature were mainly attributed to the fact that these measurements represent (a) different time scales and (b) different spatial scales. However, results from this study have shown that calculating It provide a mean for restoring selected temperature parameters and thus can contribute to fill in and extend the network of field data points for temperature interpolation purposes.  相似文献   

10.
Chemical modifications were performed on hydroxyl groups at C-11,23,24,25 positions and C-13(17) double bond of alisol A for structure–activity relationship study. Forty-one derivatives of alisol A were synthesized and assayed for their in vitro anti-hepatitis B virus (HBV) activities and cytotoxicities. Of them, 14 compounds were active against HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) secretion in HepG 2.2.15 cells, and the most promising compound 25 exhibited high activities against secretion of HBsAg (IC50 = 0.028 mM), HBeAg (IC50 = 0.027 mM) and remarkable selective indices (SIHBsAg >90, SIHBeAg >93).  相似文献   

11.
《Aquatic Botany》2007,86(1):89-92
The slope of the initial linear range of a photosynthesis–irradiance (PI) curve, alpha (α), is frequently, but often incorrectly, used to denote the maximal quantum yield (or the “efficiency” of photosynthesis) of higher plants and macroalgae under the conditions for which the PI curve was measured. When using the increasingly popular method of pulse amplitude modulated (PAM) fluorometry, the determination of α from so-called rapid light curves (RLC) may lead to misinterpretations when comparing photosynthetic efficiencies under different environmental conditions. Furthermore, since PAM fluorometry measures the quantum yield (Y) directly, there may be no need to estimate it from the initial slopes of RLCs.We compared photosynthetic parameters derived from RLCs of Ulva sp. measured during winter and summer, and show large differences in α when electron transport rates (ETR) were plotted against incident irradiance (Ii) [α = 0.26 ± 0.00 versus 0.08 ± 0.01 during the winter (November–December) and summer (July–August), respectively], as is usually done. On the other hand, no differences in the initial slopes of the RLCs were apparent when plotting ETR versus the absorbed irradiance (Ia) (initial slope = 0.75 ± 0.01 versus 0.62 ± 0.12 during the winter and summer, respectively); this is called for since also ETR is calculated using Ia. Using the Ia based RLCs, it was also found that the values of the initial slopes equalled those of the first Y-value measurements of the RLCs (Y0) (t-test, p > 0.05, r2 = 0.85). Therefore, when using PAM fluorometry, we suggest (a) to present the x-axis of RLCs as Ia (Ii × AF × 0.5), and ETR on the y-axis as Y × Ia, and (b) that Y0 can be taken as a correct measure of the maximal quantum yield instead of estimating it from an RLC.  相似文献   

12.
Salts inhibit the activity of sweet almond β-glucosidase. For cations (Cl salts) the effectiveness follows the series: Cu+2, Fe+2 > Zn+2 > Li+ > Ca+2 > Mg+2 > Cs+ > NH4+ > Rb+ > K+ > Na+ and for anions (Na+ salts) the series is: I > ClO4 > SCN > Br  NO3 > Cl  OAc > F  SO4 2. The activity of the enzyme, like that of most glycohydrolases, depends on a deprotonated carboxylate (nucleophile) and a protonated carboxylic acid for optimal activity. The resulting pH-profile of kcat/Km for the β-glucosidase-catalyzed hydrolysis of p-nitrophenyl glucoside is characterized by a width at half height that is strongly sensitive to the nature and concentration of the salt. Most of the inhibition is due to a shift in the enzymic pKas and not to an effect on the pH-independent second-order rate constant, (kcat/Km)lim. For example, as the NaCl concentration is increased from 0.01 M to 1.0 M the apparent pKa1 increases (from 3.7 to 4.9) and the apparent pKa2 decreases (from 7.2 to 5.9). With p-nitrophenyl glucoside, the value of the pH-independent (kcat/Km)lim (= 9 × 104 M 1 s 1) is reduced by less than 4% as the NaCl concentration is increased. There is a similar shift in the pKas when the LiCl concentration is increased to 1.0 M. The results of these salt-induced pKa shifts rule out a significant contribution of reverse protonation to the catalytic efficiency of the enzyme. At low salt concentration, the fraction of the catalytically active monoprotonated enzyme in the reverse protonated form (i.e., proton on the group with a pKa of 3.7 and dissociated from the group with a pKa of 7.2) is very small (≈ 0.03%). At higher salt concentrations, where the two pKas become closer, the fraction of the monoprotonated enzyme in the reverse protonated form increases over 300-fold. However, there is no increase in the intrinsic reactivity, (kcat/Km)lim, of the monoprotonated species. For other enzymes which may show such salt-induced pKa shifts, this provides a convenient test for the role of reverse protonation.  相似文献   

13.
Biomass production, pattern of nodulation, nutrient uptake, net photosynthetic rate (Pn), leaf temperature (Tleaf), leaf nitrate reductase (NR) activity and free proline of Dalbergia sissoo seedlings planted in containers with 120 kg soil were studied under different water stress levels to assess the productive potential of the species in dry areas. Seedlings were irrigated at 20 mm (W1), 14 mm (W2), 10 mm (W3), 8 mm (W4) throughout the experimental period to maintain the respective treatment up to the lowest soil water content of 7.43%, 5.64%, 4.30% and 3.23%, respectively. There was a treatment (W5) in which seedling were irrigated once to −0.03 MPa and left without re-irrigation. Decreased irrigation level resulted in lowering of leaf water potential (LWP), net photosynthetic rate (Pn), total number of root nodules and nodule dry mass and nitrogen uptake in the seedling. Pn, leaf nitrate reductase (NR) activity and seedling biomass were highest in W1 indicating a positive relations of NR activity with CO2 assimilation and biomass production. The decrease in Pn, leaf NR activity and LWP was sharp at W3 onwards. Monthly changes in the values of Pn, Tleaf and NR activity indicate environmental effect on these physiological variables. Proline was detected only in the seedlings of W3, W4 and W5 treatments after February and was highest in the seedlings of W5 treatment. The study suggests that severe water deficit adversely affect physiological and biochemical processes that resulted in reduced growth, nutrient uptake and biomass productivity in D. sissoo seedlings. Re-irrigation above W3 level is recommended for this species.  相似文献   

14.
We investigated the catalytic activity and inhibition of the β-class carbonic anhydrase (CA, EC 4.2.1.1) CahB1, from the relict cyanobacterium Coleofasciculus chthonoplastes (previously denominated Microcoleus chthonoplastes). The enzyme showed good activity as a catalyst for the CO2 hydration, with a kcat of 2.4 × 105 s−1 and a kcat/Km of 6.3 × 107 M−1 s−1. A range of inorganic anions and small molecules were investigated as inhibitors of CahB1. Perchlorate and tetrafluoroborate did not inhibit the enzyme (KIs >200 mM) whereas selenate and selenocyanide were ineffective inhibitors too, with KIs of 29.9–48.61 mM. The halides, pseudohalides, carbonate, bicarbonate, trithiocarbonate and a range of heavy metal ions-containing anions were submillimolar–millimolar inhibitors (KIs in the range of 0.15–0.90 mM). The best CahB1 inhibitors were N,N-diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KIs in the range of 8–75 μM, whereas acetazolamide inhibited the enzyme with a KI of 76 nM. This is the first kinetic and inhibition study of a cyanobacterial CA. As these enzymes are widespread in many cyanobacteria, being crucial for the carbon concentrating mechanism which assures substrate to RubisCO for the CO2 fixation by these organisms, a detailed kinetic/inhibition study may be essential for a better understanding of this superfamily of metalloenzymes and for potential biotechnological applications in biomimetic CO2 capture processes.  相似文献   

15.
《Phytomedicine》2014,21(10):1146-1153
IntroductionR(+)-pulegone is a ketone monoterpene and it is the main constituent of essential oils in several plants. Previous studies provided some evidence that R(+)-pulegone may act on isolated cardiac myocytes. In this study, we evaluated in extended detail, the pharmacological effects of R(+)-pulegone on cardiac tissue.MethodsUsing in vivo measurements of rat cardiac electrocardiogram (ECG) and patch-clamp technique in isolated myocytes we determinate the influence of R(+)-pulegone on cardiac excitability.ResultsR(+)-pulegone delayed action potential repolarization (APR) in a concentration-dependent manner (EC50 = 775.7 ± 1.48, 325.0 ± 1.30, 469.3 ± 1.91 μM at 10, 50 and 90% of APR respectively). In line with prolongation of APR R(+)-pulegone, in a concentration-dependent manner, blocked distinct potassium current components (transient outward potassium current (Ito), rapid delayed rectifier potassium current (IKr), inactivating steady state potassium current (Iss) and inward rectifier potassium current (IK1)) (EC50 = 1441 ± 1.04; 605.0 ± 1.22, 818.7 ± 1.22; 1753 ± 1.09 μM for Ito, IKr, Iss and IK1, respectively). The inhibition occurred in a fast and reversible way, without changing the steady-state activation curve, but instead shifting to the left the steady-state inactivation curve (V1/2 from −56.92 ± 0.35 to −67.52 ± 0.19 mV). In vivo infusion of 100 mg/kg R(+)-pulegone prolonged the QTc (∼40%) and PR (∼62%) interval along with reducing the heart rate by ∼26%.ConclusionTaken together, R(+)-pulegone prolongs the APR by inhibiting several cardiomyocyte K+ current components in a concentration-dependent manner. This occurs through a direct block by R(+)-pulegone of the channel pore, followed by a left shift on the steady state inactivation curve. Finally, R(+)-pulegone induced changes in some aspects of the ECG profile, which are in agreement with its effects on potassium channels of isolated cardiomyocytes.  相似文献   

16.
We investigated the cloning, catalytic activity and anion inhibition of the β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Legionella pneumophila. Two such enzymes, lpCA1 and lpCA2, were found in the genome of this pathogen. These enzymes were determined to be efficient catalysts for CO2 hydration, with kcat values in the range of (3.4–8.3) × 105 s−1 and kcat/KM values of (4.7–8.5) × 107 M−1 s−1. A set of inorganic anions and small molecules was investigated to identify inhibitors of these enzymes. Perchlorate and tetrafluoroborate were not acting as inhibitors (KI >200 mM), whereas sulfate was a very weak inhibitor for both lpCA1 and lpCA2 (KI values of 77.9–96.5 mM). The most potent lpCA1 inhibitors were cyanide, azide, hydrogen sulfide, diethyldithiocarbamate, sulfamate, sulfamide, phenylboronic acid and phenylarsonic acid, with KI values ranging from 6 to 94 μM. The most potent lpCA2 inhibitors were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, with KI values ranging from 2 to 13 μM. As these enzymes seem to be involved in regulation of phagosome pH during Legionella infection, inhibition of these targets may lead to antibacterial agents with a novel mechanism of action.  相似文献   

17.
To investigate the pollution status and potential pollution risk of mercury (Hg) in China, surface sediment samples were collected from eight hundred and eighty-one sites, including ten major basins (Songhua River Basin (SRB), Liao River Basin (LRB), Hai River Basin (HRB), Yellow River Basin (YRB), Huai River Basin (HuRB), Yangtze River Basin (YtRB), Pearl River Basin (PRB), Southeastern River Basin (SeRB), Southwestern River Basin (SwRB) and Northwestern River Basin (NwRB)). Results showed that Hg concentrations in sediments of ten basins in China ranged from 0.001 to 8.800 mg/kg, with average ± S.D. value of 0.274 ± 0.675 mg/kg, which was obviously higher than Chinese soil background value (0.038 mg/kg) and Chinese sediment background value (0.040 mg/kg). The mean Hg concentration of ten basins decreased in the order of HRB > YtRB > SRB > PRB > HuRB > SwRB > YRB > SeRB > LRB > NwRB. Moreover, it was found that the Hg concentrations in the sediments of LRB, YtRB, PRB, SeRB and SwRB were partly driven by their total organic carbon (TOC) contents, while the effect of pH on the distribution of Hg was not obvious. The Hg concentration data were also compared with those got in other periods (1994–2015) to obtain the general variation tendency of Hg level. It was recorded that Hg concentrations in HRB have remained on high levels for a long history, while Hg contamination situation in YRB after 2004 has potentially turned to be better. The results of pollution assessment by sediment quality assessment guidelines (SQGs), contamination factor (CF), geoaccumulation index (Igeo) and potential ecological risk (Ei) suggested that YRB and HRB were the most seriously polluted river basins among the ten basins. It is urgent of constructing SQGs in China to scientifically evaluate the Hg pollution in the future.  相似文献   

18.
Fluorescent sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) were essential for demonstrating the role played by the tumor-associated isoform CA IX in acidification of tumors, cancer progression towards metastasis and for the development of imaging and therapeutic strategies for the management of hypoxic tumors which overexpress CA IX. However, the presently available such compounds are poorly water soluble which limits their use. Here we report new fluorescent sulfonamides 7, 8 and 10 with increased water solubility. The new derivatives showed poor hCA I inhibitory properties, but were effective inhibitors against the hCA II (KIs of 366–127 nM), CA IX (KIs of 8.1–36.9 nM), CA XII (KIs of 4.1–20.5 nM) and CA XIV (KIs of 12.8–53.6 nM). A high resolution X-ray crystal structure of one of these compounds bound to hCA II revealed the factors associated with the good inhibitory properties. Furthermore, this compound showed a three-fold increase of water solubility compared to a similar derivative devoid of the triazole moiety, making it an interesting candidate for ex vivo/in vivo studies.  相似文献   

19.
A series of N-alkylated saccharin derivatives were synthesized and tested for the inhibition of four different isoforms of human carbonic anhydrase (CA, EC 4. 2.1.1): the transmembrane tumor-associated CA IX and XII, and the cytosolic CA I and II. Most of the reported derivatives inhibited CA XII in the nanomolar/low micromolar range, hCA IX with KIs ranging between 11 and 390 nM, whereas they were inactive against both CA I (KIs >50 μM) and II (KIs ranging between 39.1 nM and 50 μM). Since CA I and II are off-targets of antitumor carbonic anhydrase inhibitors (CAIs), the obtained results represent an encouraging achievement for the development of new anticancer candidates without the common side effects of non-selective CAIs. Moreover, the lack of an explicit zinc binding function on these inhibitors opens the way towards the exploration of novel mechanisms of inhibition that could explain the high selectivity of these compounds for the inhibition of the transmembrane, tumor-associated isoforms over the cytosolic ones.  相似文献   

20.
《Process Biochemistry》2007,42(4):547-553
The removal of Zn(II) ions from aqueous solution using pure and chemically pretreated biomass of Moringa oleifera was investigated at 30 ± 1 °C in this study. The experimental results explored that the maximum pH (pHmax) for efficient sorption of Zn(II) was 7 ± 0.1 at which evaluated biosorbent dosage and biosorbent particle size, were 0.5 g/L, <0.255 mm, respectively. The cellular Zn(II) concentration increased with the concentrations of Zn(II) in solution. Pretreatment of M. oleifera biomass affected the sorption process and the uptake capacity (mg/g) of biomass for Zn(II) uptake was in following order: NaOH (45.76) > H2SO4 (45.00) > CTAB (42.80) > Ca(OH)2 (42.60) > Triton X-100 (42.06) > H3PO4 (41.22) > Al(OH)3 (41.06) > SDS (40.41) > HCl (37.00) > non-treated biomass (36.07). There was significant increase in uptake capacity of M. oleifera biomass, which suggested that affinity between metal and sorbent can be increased after some sort of pretreatment. Both Langmuir and Freundlich isotherm model fitted well to data of Zn(II) biosorption as represented by high value of their correlation coefficient (i.e. R2  1). Kinetic studies revealed that Zn(II) uptake was fast with 90% or more of uptake occurring with in 40 min of contact time and the equilibrium was reached in 50 min of contact time. The sorption rates were better described by a second order expression than by a more commonly applied Lagergren equation. Finally it was concluded that pretreatment of M. oleifera biomass can achieve superior Zn(II) uptake capacity in comparison to non-pretreated biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号