首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stressor-response models offer guidance for concentration-based nutrient criteria in lakes under human intervention. Diatom-based statistics from biological responses were incorporated to derive taxon-specific and community-level change points (thresholds) of phosphorous and nitrogen in 77 Yangtze floodplain lakes. Diatom metrics relating with conductivity were adopted as response variables, since conductivity explained the maximum variation (38.1%) in diatom assemblages via Bootstrapped regression trees. Nonparametric change-point analysis and Threshold Indicator Taxa ANalysis showed threshold responses of diatom community structure at 0.05–0.08 mg TP/L in connected lakes and 0.02–0.04 mg TP/L in isolated lakes. Distinct community change points of sensitive diatoms occurred at 0.96–1.63 mg TN/L in connected lakes and 0.52–0.63 mg TN/L in isolated lakes. Diatom community structures of tolerant taxa were substantially altered beyond 0.22–0.23 mg/L in connected lakes and 0.52–0.69 mg NOx/L in isolated lakes. Hydrological river-lake connectivity differed significantly in ecological nutrient criteria with more TN/TP criteria and less NOx criteria in connected lakes. Given the ecological significance and biological integrity, diatom-based statistics can provide more reliable change points (thresholds) for nutrient criteria than Chl a-nutrient relationships.  相似文献   

2.
Human influence on the landscape has caused nutrients in surface waters to increase to the point where their presence has substantially altered biological communities. Because this is a nationally recognized problem, the United States Environmental Protection Agency (USEPA) tasked each state, tribe, and territory to adopt numeric nutrient criteria. Here we integrate the concept of ecological thresholds with the derivation of effects-based numeric nutrient criteria. Acceptable levels of risk exceeding predefined biocriteria were determined using conditional probability and nonparametric changepoint analysis. We show how certain community metrics exhibit threshold responses to nutrients. Using these thresholds, we suggest nutrient values protective of aquatic life and characterize community composition. Nutrient criteria were suggested for two aggregations of USEPA's nutrient ecoregions in New York State an upland pristine forested region (Ecoregions VIII and XI) and a nutrient-enriched lowland region (Ecoregions VII and XIV). Of 11 biological community metrics evaluated, 5 had a strong response to nutrients (NBI-P, NBI-N, HBI, TRI, and DMA). Maximum probabilities of exceeding the biological impairment thresholds established for these metrics ranged from 81% to 100%. Changepoint analysis conducted on probability outcomes of these metrics resulted in nutrient thresholds at or above USEPA nutrient guidance values, depending on ecoregion and nutrient variable (Ecoregion VIII/XI: 15 μg/L TP, 472 μg/L TN, 150 μg/L NO3-N, Ecoregion VII/XIV: 17 μg/L TP, 1133 μg/L TN, 356 μg/L NO3-N). Results of taxonomic similarity percentages (SIMPER) and species contributions indicate that several orders of macroinvertebrates and diatoms exhibit significant shifts in their percent of contributions to sample similarity in response to changes in nutrient concentrations.  相似文献   

3.
Excessive nutrient loads resulted in cascading trophic effects and ecosystem responses. Aims of this study were to determine if the thresholds in nutrient gradient related to phytoplankton community composition could be identified in eutrophic lake, and further to analyze the change of phytoplankton assemblage along the nutrient concentration based on Threshold Indicator Taxa ANalysis (TITAN). The results presented the significant community thresholds estimate for negative taxa declining at 1.650 mg/L TN and 131.5 μg/L TP, as well as simultaneously increasing for positive taxa at 1.665 mg/L TN and 151.5 μg/L TP along nutrient enrichment gradient. However, there was unremarkable change point determined for TN:TP ratios in Lake Dianchi. Elevated TN and TP altered the phytoplankton assemblage, even may induce the fade of algal blooms across the threshold in the hypertrophic lake. The findings could provide implications for deeply deciphering abrupt transitions for phytoplankton assemblage and developing nutrient tactics to protect the lake ecosystems.  相似文献   

4.
《Ecological Indicators》2007,7(2):371-386
Aquatic macroinvertebrates have been among the principal biological communities used for freshwater monitoring and assessment for several decades, but macroinvertebrate biomonitoring has not incorporated nutrient measures into assessment strategies. Two nutrient biotic indices were developed for benthic macroinvertebrate communities, one for total phosphorus (NBI-P), and one for nitrate (NBI-N). Weighted averaging was used to assess the distributions of 164 macroinvertebrate taxa across TP and NO3 gradients and to establish nutrient optima and subsequent nutrient tolerance values. Both the NBI-P and NBI-N were correlated with increasing mean TP and NO3 values (r = 0.68 and r = 0.57, respectively, p < 0.0001). A three-tiered scale of eutrophication for TP and NO3 (oligotrophic: ≤0.0175 mg/l TP, ≤0.24 mg/l NO3, mesotrophic: >0.0175 to ≤0.065 mg/l TP, >0.24 to ≤0.98 mg/l NO3, eutrophic: >0.065 mg/l TP, >0.98 mg/l NO3) was also established through cluster analysis of invertebrate communities using Bray–Curtis (quantitative) similarity. Significant differences (p < 0.0001) were detected between median NBI-P and NBI-N scores among the three trophic states. Therefore, the nutrient biotic indices (NBIs) appear to accurately reflect changes in stream trophic state. Multimetric water quality assessments were also used to identify thresholds of impairment among the three trophic states. Hodges-Lehman estimation indicated that the greatest change in assessment results occurred between the mesotrophic and eutrophic states. The eutrophic state also represented the highest percentage of overall impairment. Therefore, the suggested threshold for nutrient impairment is the boundary between mesotrophic and eutrophic (0.065 mg/l TP and 0.98 mg/l NO3). The corresponding NBI-P score (6.1) and NBI-N score (6.0) for this threshold incorporate predictive capabilities into the NBIs. The NBI and index score thresholds of impairment will provide monitoring programs with a robust measure of stream nutrient status and serve as a useful tool in enforcing regional nutrient criteria.  相似文献   

5.
We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to characterize ecological responses and to develop concentration-based nutrient criteria (derived from ecological effects) for streams in Connecticut, USA, where urbanization is the primary cause of watershed alteration. Mean background TP concentration in the absence of anthropogenic land cover was predicted to be 0.017 mg/l, which was similar to the 25th percentile of all study sites. Increased TP concentrations were significantly correlated with altered diatom community structure, decreased percent low P diatoms and diatoms sensitive to impervious cover, and increased percent high P diatoms, diatoms that increase with greater impervious cover, and chlorophyll a (P < 0.01). Variance partitioning models showed that shared effects of anthropogenic land cover and chemistry (i.e., chemistry affected by land cover) represented the majority of explained variation in diatom metrics and chlorophyll a. Bootstrapped regression trees, threshold indicator taxa analysis, and boosted regression trees identified TP concentrations at which strong responses of diatom metrics and communities occurred, but these values varied among analyses. When considering ecological responses, scientifically defensible and ecologically relevant TP criteria were identified at (1) 0.020 mg/l for designating highest quality streams and restoration targets, above which sensitive taxa steeply declined, tolerant taxa increased, and community structure changed, (2) 0.040 mg/l, at which community level change points began to occur and sensitive diatoms were greatly reduced, (3) 0.065 mg/l, above which most sensitive diatoms were lost and tolerant diatoms steeply increased to their maxima, and (4) 0.082 mg/l, which appeared to be a saturated threshold, beyond which substantially altered community structure was sustained. These criteria can inform anti-degradation policies for high quality streams, discharge permit decisions, and future strategies for watershed development and managment. Our results indicated that management practices and decisions at the watershed scale will likely be important for improving degraded streams and conserving high quality streams. Results also emphasized the importance of incorporating ecological responses and considering the body of evidence from multiple conceptual approaches and statistical analyses for developing nutrient criteria, because solely relying on one approach could lead to misdirected decisions and resources.  相似文献   

6.
Coastal mangroves have the potential to improve the water quality of urban and rural runoff before it is discharged into adjacent coastal bays and oceans; but they also can be impaired by excessive pollutants from upstream. Nutrients (phosphorus and nitrogen), salinity, and other water quality parameters were measured in five mangrove tidal creeks in different hydrogeomorphic and urbanization settings during high and low tides over a calendar year of wet (June and August 2015) and dry (February and April 2016) seasons in the Greater Naples Bay area in Southwest Florida, USA. Nutrient concentrations (ave. ± std error) in the tidal creeks were 0.055 ± 0.008 mg-P/L for total phosphorus (TP) and 0.610 ± 0.020 mg-N/L for total nitrogen (TN), with an average N:P ratio of 11.4:1. Average wet season TP (0.075 ± 0.010 mg-P/L) was significantly higher than the dry season TP (0.033 ± 0.003 mg-P/L; p < 0.01, f = 15.17, fcrit = 3.89) and the average wet season TN (0.75 ± 0.03 mg-N/L) was significantly higher than dry season TN (0.52 ± 0.02 mg/L; p < 0.01, f = 64.14, fcrit = 3.89), suggesting that urban stormwater runoff is directly or indirectly affecting the nutrient conditions in these mangroves. Significant differences in nutrient concentrations between low tide and high tide were not found for either TP (p = 0.43, f = .63, fcrit = 3.88) or TN (p = 0.20, f = 1.66, fcrit = 3.89). These differences were confirmed by a PCA and cluster analyses, which found differences to be seasonal. We could not conclude from these results whether these five mangrove wetlands were sources nor sinks of nutrients based simply on the measurement of nutrient concentrations. But we illustrated that nutrient concentrations were indicators of the mangroves’ hydrogeomorphic settings, their tidal fluxes from Naples Bay, and the Bay's upstream watersheds, and less by direct urban runoff.  相似文献   

7.
In this study, we apply an integrated empirical and mechanism approach to estimate a comprehensive long-term (1953–2012) total nitrogen (TN) and total phosphorus (TP) loading budget for the eutrophic Lake Chaohu in China. This budget is subsequently validated, firstly, by comparing with the available measured data in several years, and secondly, by model simulations for long-term nutrient dynamics using both Vollenweider (VW) model and dynamic nonlinear (DyN) model. Results show that the estimated nutrient budget is applicable for further evaluations. Surprisingly, nutrient loading from non-point sources (85% for TN and 77% for TP on average) is higher than expectation, suggesting the importance of nutrient flux from the soil in the basin. In addition, DyN model performs relatively better than VW model, which is attributed to both the additional sediment recycling process and the parameters adjusted by the Bayesian-based Markov Chain Monte Carlo (MCMC) method. DyN model further shows that the TP loading thresholds from the clear to turbid state (631.8 ± 290.16 t y−1) and from the turbid to clear state (546.0 ± 319.80 t y−1) are significantly different (p < 0.01). Nevertheless, the uncertainty ranges of the thresholds are largely overlapped, which is consistent with the results that the eutrophication of Lake Chaohu is more likely to be reversible (74.12%) than hysteretic (25.53%). The ecosystem of Lake Chaohu shifted from the clear to turbid state during late 1970s. For managers, approximately two-thirds of the current TP loading must be reduced for a shift back with substantial improvement in water quality. Because in practice the reduction of loading from a non-point source is very difficult and costly, additional methods beyond nutrient reduction, such as water level regulation, should be considered for the lake restoration.  相似文献   

8.
The aim of this study was to determine the effects of catchment and riparian stream buffer-wide urban and non-urban land cover/land use (LC/LU) on total nitrogen (TN) and total phosphorus (TP) runoff to the Chesapeake Bay. The effects of the composition and configuration of LC/LU patches were explored in particular. A hybrid-statistical-process model, the SPAtially Referenced Regression On Watershed attributes (SPARROW), was calibrated with year 1997 watershed-wide, average annual TN and TP discharges to Chesapeake Bay. Two variables were predicted: (1) yield per unit watershed area and (2) mass delivered to the upper estuary. The 166,534 km2 watershed was divided into 2339 catchments averaging 71 km2. LC/LU was described using 16 classes applied to both the catchments and also to riparian stream buffers alone. Seven distinct landscape metrics were evaluated. In all, 167 (TN) and 168 (TP) LC/LU class metric combinations were tested in each model calibration run. Runs were made with LC/LU in six fixed riparian buffer widths (31, 62, 125, 250, 500, and 1000 meters (m)) and entire catchments. The significance of the non-point source type (land cover, manure and fertilizer application, and atmospheric deposition) and factors affecting land-to-water delivery (physiographic province and natural or artificial land surfaces) was assessed. The model with a 31 m riparian stream buffer width accounted for the highest variance of mean annual TN (r2 = 0.9366) and TP (r2 = 0.7503) yield (mass for a specified time normalized by drainage area). TN and TP loadings (mass for a specified time) entering the Chesapeake Bay were estimated to be 1.449 × 108 and 5.367 × 106 kg/yr, respectively. Five of the 167 TN and three of the 168 TP landscape metrics were shown to be significant (p-value  0.05) either for non-point sources or land-to-water delivery variables. This is the first demonstration of the significance of riparian LC/LU and landscape metrics on water quality simulation in a watershed as large as the Chesapeake Bay. Land cover metrics can therefore be expected to improve the precision of estimated TN and TP annual loadings to the Chesapeake Bay and may also suggest changes in land management that may be beneficial in control of nutrient runoff to the Chesapeake Bay and similar watersheds elsewhere.  相似文献   

9.
基于附石硅藻的三峡水库入库支流氮、磷阈值   总被引:1,自引:0,他引:1  
汤婷  任泽  唐涛  蔡庆华 《生态学杂志》2016,27(8):2670-2678
为全面了解河流附石硅藻群落对水体氮、磷变化的响应规律,并找出氮、磷指示物种,本研究采用非参数突变点分析法(nCPA)及临界指示物种分析法(TITAN)探讨了三峡水库入库支流附石藻类叶绿素a、硅藻物种丰富度、Shannon多样性指数以及硅藻群落组成的总氮(TN)、总磷(TP)阈值.结果表明: 据nCPA得到的所有藻类参数的TP阈值均接近0.03 mg·L-1;除硅藻群落组成外,其他参数的TN阈值也较接近(约为0.8 mg·L-1).TITAN区分了群落中敏感种、耐受种对TN、TP变化的响应,且阈值范围涵盖了其他参数的阈值;还确定了9种TN指示种和10种TP指示种,其中TN敏感种1种,耐受种8种;TP敏感种5种,耐受种5种.因此,本研究以TITAN结果为依据确定河流的TN、TP阈值.即:当河流TN浓度低于0.382 mg·L-1或TP浓度低于0.016 mg·L-1时(负响应阈值),河流附石硅藻群落组成相对稳定;超过这一浓度阈值后,敏感种密度减少;当河流的TN浓度超过1.298 mg·L-1或TP浓度超过0.065 mg·L-1时(正响应阈值),耐受种也将受到明显影响,附石藻类的群落组成会发生显著变化.据此标准,调查样点中约87%的样点TN浓度超过TN负响应阈值,22%的样点超过正响应阈值;而超过TP负响应阈值的点占94%,超过TP正响应阈值的点占14%,说明三峡水库大部分入库河流虽受到了一定程度的干扰,但干扰程度并不严重.本研究结果可为三峡水库入库河流生态管理决策提供科学依据.  相似文献   

10.
《Ecological Engineering》2007,29(2):154-163
The South Nation River Watershed, in eastern Ontario, Canada, is an agricultural watershed impacted by excess nutrient loading primarily from agricultural activities. A constructed wetland for the treatment of agricultural wastewater from a 150-cow dairy operation in this watershed was monitored in its eighth operating season to evaluate the proportion of total nitrogen (TN) (approximated by total Kjeldahl nitrogen (TKN) due to low NO3) and total phosphorus (TP) removal that could be attributed to storage in Typha latifolia L. and Typha angustifolia L., which dominate this system. Nutrient loading rates were high, with 16.2 kg ha−1 d−1 N and 3.4 kg ha−1 d−1 P entering the wetland and loading the first wetland cell. Plant uptake accounted for 0.7% of TKN removal when the vegetated free water surface cells were considered together. However, separately, in the second wetland cell with lower N and P loading rates, plants accounted for 9% of TKN, 21% of NH4+ and 5% of TP removal. Plant uptake was significant to overall removal given wetland age and nutrient loading. Nutrient storage during the growing season at this constructed wetland helped reduce the nutrient load entering the watershed, already stressed by intensive local agriculture.  相似文献   

11.
Wetlands provide a large pool of organic matter and nutrients, and are important for maintaining material cycle balances in terrestrial ecosystems, and also help retard climate change. Land use changes in wetlands have greatly disturbed the natural evolution of wetland ecosystems. Wetland drainage and reclamation alters the physical, chemical and biological conditions of the wetland, thus significantly disturbing the material cycles, leading to significant changes in the biogeochemical processes of carbon, nitrogen and phosphorus in the wetland. The wetlands in the Sanjiang Plain are the largest area of fresh wetlands in China. However, the area has experienced major land uses changes since the 1950s; areas of the wetland have been drained and converted to arable land. Some studies have been conducted into the effects of land use change on material cycles in the Sanjiang Plain wetlands but few reports have discussed the C/N and C/P ratios and pH values as indicators of wetland degradation due to land use changes. We selected eight land uses: humus marsh (HM), marshy meadow (MM), drained humus marsh (DHM), drained marshy meadow (DMM), tillage land (TL), abandoned land (AL), natural secondary forest (NSF) and artificial forest (AF), in the Honghe area of the Sanjiang Plain. We studied changes in the total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), C/N and C/P ratios and pH values in topsoil (0–20 cm) of these eight different land uses. The possible mechanisms underlying the changes, and the significance of the C/N and C/P ratios as indicators of soil quality were also discussed. In the natural wetland, the TOC, TN and TP concentrations in the soil were high, with values of 203.5 g/kg, 20.2 g/kg and 1.44 g/kg, respectively, in HM; and 59.2 g/kg, 5.28 g/kg and 0.83 g/kg, respectively, in MM. Drainage of the HM has led to decreases in the TOC, TN and TP concentrations of about 50%. Significant decreases were also observed in TOC, TN and TP for NSF and AF compared to HM. Drained MM led to decreases in the TOC and TN of about 45%, but had little effect on TP. Marshy meadow that had been drained for more than 10 years experienced an exponential decline in TOC, TN and TP, with decreases of more than 60% for TOC and TN, and 20% for TP. However, after being abandoned for a short time (5 years), the TOC, TN and TP concentrations in soil experienced little change because poor water conditions combined with low productivity led to a large loss of soil organic matter. Land use change in the marsh areas has led to a decrease in C/N and C/P ratios of the soil, which are positively related to TOC and TN with different land uses (P < 0.05). Marsh reclamation has led to decreasing C/N and C/P ratios in soil and increasing pH values, which are negatively related to TOC, TN and TP (P < 0.05). Changes in carbon, nitrogen and phosphorus in soil with different land uses were mainly regulated by water-heat conditions and microbial activity, while the C/N and C/P ratios were mainly regulated by substrate availability. Our results suggest that C/N and C/P ratios and the pH value could be used as indicators to evaluate the quality and nutrient status of wetland soil under different land uses.  相似文献   

12.
《Aquatic Botany》2004,79(2):111-124
The main aim of this study was to investigate if the charophyte species Chara baltica, Chara canescens (two populations from the Baltic Sea (BS) and the Gulf of Korinth, Greece (GK)), and Lamprothamnium papulosum exhibit different acclimation capacities to irradiance. Growth, photosynthesis and pigment content were examined in the laboratory under six irradiance conditions (35–500 μmol photons m−2 s−1). Growth experiments showed increasing growth rates from 35 μmol photons m−2 s−1 (∼10 mg fresh weight (FW)) up to 70 μmol photons m−2 s−1 (∼20 mg FW) in C. baltica, from 35 μmol photons m−2 s−1 (∼15 mg FW) up to 380 μmol photons m−2 s−1 (∼145 mg FW) in C. canescens (BS), and up to the highest growth irradiance in algae of L. papulosum (35 μmol: ∼5 mg FW; 500 μmol: ∼20 mg FW). The species were tested for their ability to acclimate to different growth irradiances (Eg) by calculating Pmax (maximum photosynthesis rate at saturating irradiances), α (the efficiency of light utilization at limiting irradiance), and Ek (the light saturation point of photosynthesis, Pmax/α). All species exhibited increasing Pmax with increasing Eg. Whereas both populations of C. canescens increased α with increasing Eg, L. papulosum and C. baltica did not acclimate α at all. Ek, the irradiance at which photosynthesis ceased to be light-limited, was constant for all Chara species within the range of irradiances tested. Chl a/Chl b ratios of all species were constant over the whole range of Eg. Chl a/carotenoid ratios were constant in C. baltica, whereas Chl a/carotenoid ratios in L. papulosum and C. canescens (BS) decreased from 250 and 70 μmol photons m−2 s−1 upwards, respectively. Pigmentation analysis showed that Chl a/carotenoid acclimation was mainly caused by species-specific capacity to raise the content of lutein and carotene (C. canescens (BS), C. canescens (GK)) and xanthophyll cycle pigments (XCP; L. papulosum). The non-photochemical quenching (NPQ) capacities of L. papulosum, C. canescens (BS), and C. canescens (GK) were dependent from preacclimation status of algae, whereas NPQ of C. baltica was independent from growth irradiance.Our results indicate that C. baltica and C. canescens (BS) were light saturated within the chosen irradiances, whereas C. canescens (GK) and L. papulosum did not reach their limits of high-light acclimation. The photosynthetic pigments lutein, α- and β-carotene are suggested to act as photo-protective pigments in L. papulosum and C. canescens.  相似文献   

13.
《农业工程》2014,34(3):154-159
The distribution and size fractions of chlorophyll a (Chl a) concentration in the eastern equatorial Pacific Ocean in boreal autumn were investigated during October and November, 2011. Environmental factors, including hydrology and nutrients, that might affect the distribution and size composition were analyzed. A total of 18 stations including 11 CTD stations and 7 navigation stations were selected which stretch from the northwest coast of South America to the area of the central Pacific Ocean south of the Hawaiian Islands (2.77°S–13.02°N, 84.11–154.02°W). The studied area can be divided into two transects: the 6°N transect (124–148°W) and the154°W transect (10–13°N). Results showed that the surface Chl a concentration was higher in the east near the northwest coast of South America (>0.200 mg/m3) and lower in the west (0.100–0.200 mg/m3), and it presented a highly significant negative correlation with sea surface temperature (p < 0.001). There were some differences between the sectional distribution of Chl a concentration between the 6°N and 154°W transects. The high values of Chl a concentration occurred near the surface along the 6°N transect (0–75 m), while they were relatively deeper along the 154°W transect (50–100 m). Iron might be the factor that limited the growth of phytoplankton in the eastern equatorial Pacific Ocean. Picophytoplankton (Pico) was the dominant taxa in the surveyed area, particularly in the waters along the two transects (>70% of total Chl a). The Pico to total Chl a ratio was higher in the upper layer (>70%) than in the deeper layer.  相似文献   

14.
High levels of nutrients in fish ponds by fish farming may cause significant eutrophication leading to a loss in species richness and a decrease of cover of aquatic plants to phytoplankton dominance. This shift can be represented by a tipping point where a significant change in the state of the ecosystem is observed such as a change from high to low aquatic plants species richness and cover. A total of 100 fish ponds were studied during five years in the Dombes region, France, to determine tipping points in aquatic plant richness and cover using chlorophyll α (CHL), water transparency, Total N (TN) and Total P (TP) gradients with two statistical methods. The relationships between tipping points, nutrient loads and yearly variations in weather conditions were also evaluated. Looking at the five years data, tipping points were observed in aquatic plant richness at 6 and 60 μg/L for CHL, and at 3.90 mg/L for TN concentration; as well as at 70 cm for water transparency, but no tipping point was found with TP. For aquatic plant cover, tipping points were observed at 11 μg/L for CHL, 2.42 mg/L for TN, 0.05 mg/L for TP, and at 62 cm for water transparency. These tipping points showed a significant decrease of aquatic plant species richness and cover, linked to the nutrient concentrations which drive the competition between the primary producers phytoplankton and aquatic plants. However, tipping points could vary significantly between years. The inter-annual variability may be due to an early occurrence of phytoplankton blooms in some ponds in a year preventing the establishment of aquatic plants, and thus influencing the value of tipping points. Weather conditions influence the competition between primary producers by impacting chlorophyll α and nutrients concentrations. When weather conditions supported increased nutrient concentrations, the development of phytoplankton and aquatic plants was facilitated and tipping points in aquatic plant richness and cover occurred with relatively high values. Thus, a significant decrease of plant cover and richness occurred at higher level of nutrients compared to the other years. In these cases, aquatic plants dominated over phytoplankton for the spring period, and also often during summer. In conclusion, tipping points observed are mainly linked to the competition between aquatic plants and phytoplankton. In shallow and eutrophic systems like fish ponds where nutrients are not a limiting resource, weather conditions act temporarily during spring as the main regulator of this competition.  相似文献   

15.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

16.
Uptake and release of nutrients from ponds used for lotus cultivation were measured in ponds under short-term (1 yr) cultivation with compost application (pond I) and under long-term (20 yr) cultivation without compost application (pond II). Total inflow loads of TN (irrigation water, rainfall and compost) during lotus cultivation period in ponds I and II were 72.3 and 34.3 kg ha?1 182 day?1, respectively. TN removal rates in ponds I and II were 77.3 and 49.8% of total inflow load, respectively. Major removal mechanisms of TN were attributed to microbial processes and uptake by lotus. The total outflow loads (infiltration and runoff) of TN during the lotus cultivation period were 13.9 kg ha?1 182 day?1 (19.2% of total inflow TN load) for pond I, and 11.3 kg ha?1 182 day?1 (32.9% of total inflow TN load) for pond II. For TP the total inflow loads (irrigation water, rainfall and compost) during lotus cultivation in ponds I and II were 80.8 and 1.9 kg ha?1 182 day?1, respectively. TP removal rates in ponds I and II were 84.9 and ?274.1% of total input, respectively. Phosphorus removal was attributed to lotus uptake and soil adsorption. The total outflow loads (infiltration and runoff) of TP during lotus cultivation period were 10.1 kg ha?1 182 day?1 (12.5% of total inflow TP load) for pond I, and 6.6 kg ha?1 182 day?1 (355.6% of total inflow TP load) for pond II. TN and TP in runoff from pond I (with compost) was higher than that in pond II (without compost), showing that TN and TP in runoff were strongly influenced by compost addition. Therefore, in order to satisfy established water-quality standards, the amount of compost used in lotus cultivation should be evaluated.  相似文献   

17.
《Small Ruminant Research》2007,67(1-3):129-134
Metabolic experiments were conducted for each Thai native (TN) and Anglo Nubian–TN 50% (AN × TN) bucks, 26.5–38 kg BW and 35–52 months of age, by assigning the following concentrate diets, which had four levels of CP concentrations, T1: 14%, T2: 21%, T3: 28% and T4: 35%, on a DM basis. The animals were fed the concentrates at a rate of 1% of their BW and had ad libitum access to Paspalum plicatulum hay. As the CP level increased, digestibility of CP, N excretion in urine and N retention increased (P < 0.01). No significant differences of DM digestibility among the CP levels of diet and between the breeds of bucks were observed. The AN × TN had higher DM intake than TN (P < 0.05, 40.9 g/(kg BW0.75 day) versus 36.0 g/(kg BW0.75 day)), thus N intake of AN × TN was higher than that of TN (P < 0.01, 0.99 g/(kg BW0.75 day) versus 0.90 g/(kg BW0.75 day)). Digestibility of CP and blood urea N concentrations of TN were higher than those of AN × TN (P < 0.05, 69.8% versus 64.0% and 32.2 mg/dl versus 26.7 mg/dl, respectively). The AN × TN tended to retain more N than TN in the higher CP feeding condition of T3 (0.19 g/(kg BW0.75 day) versus 0.11 g/(kg BW0.75 day)) and T4 (0.25 g/(kg BW0.75 day) versus 0.17 g/(kg BW0.75 day)). Digestibility of NDF and ADF, and TDN of TN were higher than those of AN × TN (P < 0.05, 61.1% versus 55.9%, 49.6% versus 43.5% and 65.8% versus 62.4%, respectively). The overall mean DE was 109 kcal/(kg BW0.75 day), and no significant difference of DE among CP levels nor breeds of bucks was observed. Thai native was superior to AN × TN in digestibility of N and fiber fractions at the maintenance level of DE, which might have overcome inferiority of TN to AN × TN in amount of N and energy intake caused by the lower DMI. It is likely that TN goats are well adapted to fodder shortage condition due to their efficient utilization of nutrients.  相似文献   

18.
Constructed wetlands are becoming increasingly popular worldwide for removing contaminants from domestic wastewater. This study investigated the removal efficiency of nitrogen (N) and phosphorus (P) from wastewater with the simulated vertical-flow constructed wetlands (VFCWs) under three different substrates (i.e., BFAS or blast furnace artificial slag, CBAS or coal burn artificial slag, and MSAS or midsized sand artificial slag), hydraulic loading rates (i.e., 7, 14, and 21 cm d?1), and wetland operational periods (0.5, 1, and 2 years) as well as with and without planting Canna indica L. The wastewater was collected from the campus of South China Agricultural University, Guangzhou, China. Results show that the percent removal of total P (TP) and ammonium N (NH4+-N) by the substrates was BFAS > CBAS > MSAS due to the high contents of Ca and Al in substrate BFAS. In contrast, the percent removal of total N (TN) by the substrates was CBAS > MSAS > BFAS due to the complicated nitrification/denitrification processes. The percent removal of nutrients by all of the substrates was TP > NH4+-N > TN. About 10% more TN was removed from the wastewater after planting Canna indica L. A lower hydraulic loading rate or longer hydraulic retention time (HRT) resulted in a higher removal of TP, NH4+-N, and TN because of more contacts and interactions among nutrients, substrates, and roots under the longer HRT. Removal of NO3?N from the simulated VFCWs is a complex process. A high concentration of NO3?N in the effluent was observed under the high hydraulic loading rate because more NH4+-N and oxygen were available for nitrification and a shorter HRT was unfavorable for denitrification. In general, a longer operational period had a highest removal rate for nutrients in the VFCWs.  相似文献   

19.
In our lead finding program, a series of 5-thioxo-[1,2,4]triazolo[1,5-a][1,3,5]triazin-7-ones and their 5-thio-alkyl derivatives were designed and synthesized which contained different substituents at ortho-position of 2-phenyl ring attached to the fused ring structure. The preliminary pharmacological evaluation demonstrated that the synthesized compounds exhibited a varying degree of inhibitory activity towards thymidine phosphorylase (TP), comparable to reference compound, 7-Deazaxanthine (7-DX, 2) (IC50 value = 42.63 μM). The study also inferred that the ortho-substituted group at the phenyl ring and 5-thio-alkyl moiety imparted steric hindrance effects in the binding site of the enzyme, leading to a reduced inhibitory response. In addition, compound 3a was identified as a mixed-type inhibitor of TP. Moreover, computational docking study was performed to illustrate the important structural information on the plausible ligand-enzyme binding interactions.  相似文献   

20.
We assessed the effect of growth at either 400 μmol mol?1 (ambient) or 1000 μmol mol?1 (elevated) CO2 and 0 g L?1 (deprivation) or 30 g L?1 (supplementation) sugar on morphological traits, photosynthetic attributes and intrinsic elements of the CAM pathway using the CAM orchid Phalaenopsis ‘Amaglade’. The growth of shoot (retarded) and root (induced) was differently affected by CO2 enrichment and mixotrophic regime (+sugar). The Fv/Fm ratio was 14% more in CO2-enriched treatment than at ambient level during in vitro growth. At elevated level of CO2 and sugar treatment, the content of Chl(a + b), Chl a/b and Chl/Car was enhanced while carotenoid content remained unaltered. During in vitro growth, gas-exchange analysis indicated that increased uptake of CO2 accorded with the increased rate of transpiration and unchanged stomatal conductance at elevated level of CO2 under both photo- and mixotrophic growth condition. At elevated level of CO2 and sugar deprivation, activities of Rubisco (26.4%) and PEPC (74.5%) was up-regulated. Among metabolites, the content of sucrose and starch was always higher under CO2 enrichment during both in vitro and ex vitro growth. Our results indicate that plantlets grown under CO2 enrichment developed completely viable photosynthetic apparatus ready to be efficiently transferred to ex vitro condition that has far-reaching implications in micropropagation of Phalaenopsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号