首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The calcium-activated chloride channel TMEM16A is intimately linked to cancers. Over decades, TMEM16A over-expression and contribution to prognosis have been widely studied for multiple cancers strengthening the idea that TMEM16A could be a valuable biomarker and a promising therapeutic target. Surprisingly, from the survey of the literature, it appears that TMEM16A has been involved in multiple cancer-related functions and a large number of molecular targets of TMEM16A have been proposed. Thus, TMEM16A appears to be an ion channel with a multifaceted role in cancers.In this review, we summarize the latest development regarding TMEM16A contribution to cancers. We will survey TMEM16A contribution in cancer prognosis, the origins of its over-expression in cancer cells, the multiple biological functions and molecular pathways regulated by TMEM16A. Then, we will consider the question regarding the molecular mechanism of TMEM16A in cancers and the possible basis for the multifaceted role of TMEM16A in cancers.  相似文献   

2.
Contraction is a central feature for skeletal, cardiac and smooth muscle; this unique feature is largely dependent on calcium (Ca2+) signaling and therefore maintenance of internal Ca2+ stores. Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane protein that functions as a Ca2+ sensor for the activation store-operated calcium channels (SOCCs) on the plasma membrane in response to depleted internal sarco(endo)plasmic (S/ER) reticulum Ca2+ stores. STIM1 was initially characterized in non-excitable cells; however, evidence from both animal models and human mutations suggests a role for STIM1 in modulating Ca2+ homeostasis in excitable tissues as well. STIM1-dependent SOCE is particularly important in tissues undergoing sustained contraction, leading us to believe STIM1 may play a role in smooth muscle contraction. To date, the role of STIM1 in smooth muscle is unknown. In this review, we provide a brief overview of the role of STIM1-dependent SOCE in striated muscle and build off that knowledge to investigate whether STIM1 contributes to smooth muscle contractility. We conclude by discussing the translational implications of targeting STIM1 in the treatment of smooth muscle disorders.  相似文献   

3.
An important role for the DNA mismatch repair (MMR) pathway in maintaining genomic stability is embodied in its conservation through evolution and the link between loss of MMR function and tumorigenesis. The latter is evident as inheritance of mutations within the major MMR genes give rise to the cancer predisposition condition, Lynch syndrome. Nonetheless, how MMR loss contributes to tumorigenesis is not completely understood. In addition to preventing the accumulation of mutations, MMR also directs cellular responses, such as cell cycle checkpoint or apoptosis activation, to different forms of DNA damage. Understanding this MMR-dependent DNA damage response may provide insight into the full tumor suppressing capabilities of the MMR pathway. Here, we delve into the proposed mechanisms for the MMR-dependent response to DNA damaging agents. We discuss how these pre-clinical findings extend to the clinical treatment of cancers, emphasizing MMR status as a crucial variable in selection of chemotherapeutic regimens. Also, we discuss how loss of the MMR-dependent damage response could promote tumorigenesis via the establishment of a survival advantage to endogenous levels of stress in MMR-deficient cells.  相似文献   

4.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

5.
6.
Unresolved replication intermediates can block the progression of replication forks and become converted into DNA lesions, hence exacerbating genomic instability. The p53-binding protein 1 (53BP1) forms nuclear bodies at sites of unrepaired DNA lesions to shield these regions against erosion, in a manner dependent on the DNA damage kinase ATM. The molecular mechanism by which ATM is activated upon replicative stress to localize the 53BP1 protection complex is unknown. Here we show that the ATM-INteracting protein ATMIN (also known as ASCIZ) is partially required for 53BP1 localization upon replicative stress. Additionally, we demonstrate that ATM activation is impaired in cells lacking ATMIN and we define that ATMIN is required for initiating ATM signaling following replicative stress. Furthermore, loss of ATMIN leads to chromosomal segregation defects. Together these data reveal that chromatin integrity depends on ATMIN upon exposure to replication-induced stress.  相似文献   

7.
In order to characterise current and historical pattern of heavy metal (HM) pollution in Estonia, this article will compare the concentrations and stocks of Cd, Cr, Cu, Ni, Pb and Zn represented in current deposition (data from 18 local precipitation stations) with natural media of three different ages: 1–3-year-old moss carpet (ICP Vegetation moss survey data from 99 open area plots), 3–5-year-old litter layer, and several-decades-old organic layer (mor humus) of coniferous forest, in mostly podzolic soils (ICP Forest soil survey data, 75 stands).Objectives of this study are (1) to assess differences in HM retention and accumulation in various aged media of coniferous stands (2) to estimate territorial differences in current HM distribution and previously accumulated concentrations and stores of HM (3) to compare territorial distribution of HM concentration in Estonia between five different regions: N-W; N-E; S-W; S-E and Western insular region, whereas the local oil shale industry in N-E part of Estonia has been the main source of HM pollution over a long period of time and therefore may have an effect on HM regional distribution.Comparing the studied media, three types of HM retention patterns were detected: (1) for Cu, Ni, Cr (2) for Cd, Pb, (3) for Zn. The mean current level of HM deposition in Estonia is low comparison to previous decades, especially the 1980s. The effect of the previously significantly higher exposure of HM emissions and deposition is preserved in older part of soil organics (OF), where the highest stocks and concentrations of HMs (with the exception of Zn) are currently found. The HM proportions in fly ash of oil shale and in OF layer of soil were very similar with regards to Ni and Cr—indicating their origin from the oil shale industry in the N-E region. According to spatial distribution analysis, the greatest accumulated storages of Ni and Cr in OF layer of coniferous forest soils are characteristic to S-W Estonia.  相似文献   

8.
During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.  相似文献   

9.
AimTo investigate tumour motion tracking uncertainties in the CyberKnife Synchrony system with single fiducial marker in liver tumours.BackgroundIn the fiducial-based CyberKnife real-time tumour motion tracking system, multiple fiducial markers are generally used to enable translation and rotation corrections during tracking. However, sometimes a single fiducial marker is employed when rotation corrections are not estimated during treatment.Materials and methodsData were analysed for 32 patients with liver tumours where one fiducial marker was implanted. Four-dimensional computed tomography (CT) scans were performed to determine the internal target volume (ITV). Before the first treatment fraction, the CT scans were repeated and the marker migration was determined. Log files generated by the Synchrony system were obtained after each treatment and the correlation model errors were calculated. Intra-fractional spine rotations were examined on the spine alignment images before and after each treatment.ResultsThe mean (standard deviation) ITV margin was 4.1 (2.3) mm, which correlated weakly with the distance between the fiducial marker and the tumour. The mean migration distance of the marker was 1.5 (0.7) mm. The overall mean correlation model error was 1.03 (0.37) mm in the radial direction. The overall mean spine rotations were 0.27° (0.31), 0.25° (0.22), and 0.23° (0.26) for roll, pitch, and yaw, respectively. The treatment time was moderately associated with the correlation model errors and weakly related to spine rotation in the roll and yaw planes.ConclusionsMore caution and an additional safety margins are required when tracking a single fiducial marker.  相似文献   

10.
The aim of this study is to characterize the function of mitochondria and main energy fluxes in human colorectal cancer (HCC) cells. We have performed quantitative analysis of cellular respiration in post-operative tissue samples collected from 42 cancer patients. Permeabilized tumor tissue in combination with high resolution respirometry was used.Our results indicate that HCC is not a pure glycolytic tumor and the oxidative phosphorylation (OXPHOS) system may be the main provider of ATP in these tumor cells. The apparent Michaelis–Menten constant (Km) for ADP and maximal respiratory rate (Vm) values were calculated for the characterization of the affinity of mitochondria for exogenous ADP: normal colon tissue displayed low affinity (Km = 260 ± 55 μM) whereas the affinity of tumor mitochondria was significantly higher (Km = 126 ± 17 μM). But concurrently the Vm value of the tumor samples was 60–80% higher than that in control tissue. The reason for this change is related to the increased number of mitochondria. Our data suggest that in both HCC and normal intestinal cells tubulin β-II isoform probably does not play a role in the regulation of permeability of the MOM for adenine nucleotides.The mitochondrial creatine kinase energy transfer system is not functional in HCC and our experiments showed that adenylate kinase reactions could play an important role in the maintenance of energy homeostasis in colorectal carcinomas instead of creatine kinase.Immunofluorescent studies showed that hexokinase 2 (HK-2) was associated with mitochondria in HCC cells, but during carcinogenesis the total activity of HK did not change. Furthermore, only minor alterations in the expression of HK-1 and HK-2 isoforms have been observed.Metabolic Control analysis showed that the distribution of the control over electron transport chain and ATP synthasome complexes seemed to be similar in both tumor and control tissues. High flux control coefficients point to the possibility that the mitochondrial respiratory chain is reorganized in some way or assembled into large supercomplexes in both tissues.  相似文献   

11.
In a birth cohort living in Chitwan Valley, lowland Nepal, we have previously reported inverse associations between in utero levels of lead (Pb), arsenic (As) and neurodevelopment at birth measured by the Brazelton Neonatal Behavioral Assessment Scale, third edition (NBAS III). In the present paper, a follow-up of the same cohort was made on 24-month-old infants regarding the neurodevelopmental effects of these metals, taking the postnatal environment into account. In total, the same100 mother-infant pairs as the previous study, whose Pb, As, and Zn concentrations in cord blood were known, were recruited. Postnatal raising environment was evaluated using the Home Observation for Measurement of Environment (HOME) scale. Neurodevelopment of children at 24 months of age (n = 74) was assessed using the Bayley Scale of Infant Development, Second Edition (BSID II). Multivariable regression adjusting for covariates was performed to determine the associations of in utero levels of toxic and essential elements and the home environment with neurodevelopment scores. Unlike the NBAS III conducted for newborns, none of the BSID II cluster scores in 24-month-old infants were associated with cord blood levels of Pb, As, and Zn. The total HOME score was positively associated with the mental development scale (MDI) score (coefficient = 0.67, at 95% CI = 0.03 to 1.31). In this cohort, a detrimental effect of in utero Pb and As on neurodevelopmental indicators observed at birth disappeared at 24 months, while an association between neurodevelopment and home environment continued.  相似文献   

12.
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1Q488*) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1Q488* rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1Q488* mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1Q488* mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.  相似文献   

13.
High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells.We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species.We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.  相似文献   

14.
15.
The filamentous cyanobacterium Planktothrix rubescens produces secondary metabolites called microcystins (MC) that are potent toxins for most eukaryotes, including zooplankton grazers, cattle and humans. P. rubescens occurs in many deep and thermally stratified lakes throughout Europe. In Lake Zurich (Switzerland), it re-appeared in the 1970s concomitant with decreasing eutrophication. Since then, P. rubescens has become the dominant species in this major drinking water reservoir, where it forms massive metalimnetic blooms during late summer. These cyanobacteria harbor subpopulations of non-MC producers, but little is known about the environmental factors affecting the success of such genotypes. The non-MC-producing subpopulation of P. rubescens was studied using a quantitative real-time PCR (qPCR) assay on the MC synthetase (mcy) gene cluster that targets a deletion on the mcyH and mcyA genes, which inactivates MC biosynthesis. Two complementary qPCR assays were used to assess the total population abundance (based on the 16S rDNA gene) and the mcy gene copy number (based on a conserved region in the adenylation domain of the mcyB gene). The objective was to evaluate the seasonal patterns of the share of non-MC-producing filaments in the total P. rubescens population. The mcyHA mutants were present in low proportions (up to 14%) throughout the year. Their highest relative abundances occurred during the winter mixis, when total concentrations of P. rubescens were minimal. The MC deficient mutants seemed to better survive in sparse populations, possibly because of lower grazing pressure and a consequently reduced need for MC-mediated protection. Alternatively, the mutants might cope better with the sub-optimal, stressful pressure and light conditions during the winter mixis. Altogether, our results suggest that subtle trade-offs might seasonally determine the proportions of non-MC producers within P. rubescens populations.  相似文献   

16.
Since its discovery, the BRCA1 tumor suppressor has been shown to play a role in multiple DNA damage response pathways. Here, we will review the involvement of BRCA1 in base-excision DNA repair and highlight its clinical implications.  相似文献   

17.
Vimentin expression correlates well with migratory and invasive potential of the carcinoma cells. The molecular mechanism by which vimentin regulates cell motility is not yet clear. Here, we addressed this issue by depleting vimentin in oral squamous cell carcinoma derived cell line. Vimentin knockdown cells showed enhanced adhesion and spreading to laminin-5. However, we found that they were less invasive as compared to the vector control cells. In addition, signaling associated with adhesion behavior of the cell was increased in vimentin knockdown clones. These findings suggest that the normal function of β4 integrin as mechanical adhesive device is enhanced upon vimentin downregulation. As a proof of principle, the compromised invasive potential of vimentin depleted cells could be rescued upon blocking with β4 integrin adhesion-blocking (ASC-8) antibody or downregulation of β4 integrin in vimentin knockdown background. Interestingly, plectin which associates with α6β4 integrin in the hemidesmosomes, was also found to be upregulated in vimentin knockdown clones. Furthermore, experiments on lysosome and proteasome inhibition revealed that perhaps vimentin regulates the turnover of β4 integrin and plectin. Moreover, an inverse association was observed between vimentin expression and β4 integrin in oral squamous cell carcinoma (OSCC). Collectively, our results show a novel role of vimentin in modulating cell motility by destabilizing β4 integrin-mediated adhesive interactions. Further, vimentin-β4 integrin together may prove to be useful markers for prognostication of human oral cancer.  相似文献   

18.
Neurodegeneration with brain iron accumulation (NBIA) comprises a group of brain iron deposition syndromes that lead to mixed extrapyramidal features and progressive dementia. Exact pathologic mechanism of iron deposition in NBIA remains unknown. However, it is becoming increasingly evident that many neurodegenerative diseases are hallmarked by metabolic dysfunction that often involves altered lipid profile. Among the identified disease genes, four encode for proteins localized in mitochondria, which are directly or indirectly implicated in lipid metabolism: PANK2, CoASY, PLA2G6 and C19orf12. Mutations in PANK2 and CoASY, both implicated in CoA biosynthesis that acts as a fatty acyl carrier, lead, respectively, to PKAN and CoPAN forms of NBIA. Mutations in PLA2G6, which plays a key role in the biosynthesis and remodeling of membrane phospholipids including cardiolipin, lead to PLAN. Mutations in C19orf12 lead to MPAN, a syndrome similar to that caused by mutations in PANK2 and PLA2G6. Although the function of C19orf12 is largely unknown, experimental data suggest its implication in mitochondrial homeostasis and lipid metabolism. Altogether, the identified mutated proteins localized in mitochondria and associated with different NBIA forms support the concept that dysfunctions in mitochondria and lipid metabolism play a crucial role in the pathogenesis of NBIA.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

19.
BackgroundChronic myelomonocytic leukemia (CMML) is a rare hematopoietic malignancy. Treatment with hypomethylating agents (HMA) was introduced between 2004 and 2006 but its impact on population-based survival remains controversial. The aim of this study was to investigate epidemiological characteristics and survival before and after introduction of HMA treatment.MethodsWe performed a population-based analysis of CMML cases reported to the Cantonal Cancer Registries in Switzerland (SWISS) and the Surveillance, Epidemiology, and End Results (SEER) Program from the United States for 1999–2006 (before HMA) and 2007–2014 (after HMA). Time trends were compared for these two time periods.Results423 and 4144 new CMML cases were reported to the SWISS and SEER registries, respectively. We observed an increasing proportion of older patients ≥75 years in the SWISS (50.3%–62.3%) compared to a decreasing one in the SEER population (59.1%–55.1%). Age standardized incidence-rates were similar and remained stable in both countries (0.32–0.38 per 100’000 py). Relative survival (RS) improved significantly in the SEER (3 years 27%–37%; 5 years 19%–23%; p < 0.001 for both) but remained stable in the SWISS population (3 years 48% to 40%; 5 years 34% to 26%; n.s. for both).ConclusionsWith the exception of opposing age-trends, epidemiologic characteristics are similar in both countries and comparable to other population-based registries. RS remains poor and different time trends of population-based survival cannot be faithfully explained by HMA but most likely by changes in diagnostic accuracy within prognostically distinct age-groups.  相似文献   

20.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most commonly used drugs in the world due to their anti-inflammatory, analgesic and antipyretic properties. Nevertheless, the consumption of these drugs is still associated with the occurrence of a wide spectrum of adverse effects. Regarding the major role of membranes in cellular events, the hypothesis that the biological actions of NSAIDs may be related to their effect at the membrane level has triggered the in vitro assessment of NSAIDs-membrane interactions. The use of membrane mimetic models, cell cultures, a wide range of experimental techniques and molecular dynamics simulations has been providing significant information about drugs partition and location within membranes and also about their effect on diverse membrane properties. These studies have indeed been providing evidences that the effect of NSAIDs at membrane level may be an additional mechanism of action and toxicity of NSAIDs. In fact, the pharmacokinetic properties of NSAIDs are closely related to the ability of these drugs to interact and overcome biological membranes. Moreover, the therapeutic actions of NSAIDs may also result from the indirect inhibition of cyclooxygenase due to the disturbing effect of NSAIDs on membrane properties. Furthermore, increasing evidences suggest that the disordering effects of these drugs on membranes may be in the basis of the NSAIDs-induced toxicity in diverse organ systems. Overall, the study of NSAIDs-membrane interactions has proved to be not only important for the better understanding of their pharmacological actions, but also for the rational development of new approaches to overcome NSAIDs adverse effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号