首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1) Addition of glutamine, glycine, alanine, serine, phenylalanine, proline at a concentration of 3mM, each, or of an amino-acid mixture resembling the physiological amino-acid composition of portal venous blood, to influent perfusate of isolated perfused rat liver led to a 4-6% increase of liver mass without increase of the [3H]inulin space, and biphasic K+ movements across the plasma membrane. These K+ movements consisted of an initial net K+ uptake (0.4-0.9 mumol X g-1 liver) for about 2 min, being followed by a net K+ release (1.0-2.8 mumol X g-1 liver) during the next 10 min. Withdrawal of the amino acids from influent perfusate caused a slow net K+ reuptake by the liver and restored the initial liver mass. No effects on liver mass and K+ fluxes were observed following addition of glutamate or glucose at a concentration of 3mM, each. 2) Aminooxyacetate did not affect the alanine (3 mM) induced increase in liver mass. However, in presence of aminooxyacetate the alanine-induced net K+ release from the liver (i.e. K+ release from 2-10 min minus initial K+ uptake) increased from 0.1 to 2.2 mumol X g-1 liver, whereby simultaneously the alanine tissue level rose from 6.8 to 13.3 mumol X g-1 (corresponding to an increase of the intracellular alanine concentration from about 12 to 25 mM) in presence of aminooxyacetate. 3) When livers were perfused with different glutamine concentrations, a maximal increase in liver mass of 5-6% was observed at glutamine concentrations above 1.5-2mM. A halfmaximal increase in liver mass was observed at 0.6-1.0mM glutamine in influent, i.e. at the physiological portal glutamine concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This study was designed to establish the properties of liver plasma membranes (LPM) Na+,K+-ATPase in the hamster and to determine whether a similar assay may be used to measure enzyme activity in the hamster and in the rat. Maximal Na+,K+-ATPase activity was obtained when the assay medium contained 5 mM Mg APT2- with or without 1 mM free Mg2+, 120 mM Na+, 12,5 mM K+. The incubation must be performed at 37 degrees C, pH 7.4. In the absence of free Mg2+, the saturation curve with respect to the substrate Mg ATP2- resulted in biphasic complex kinetics with a maximal activity at a substrate concentration of 5 mM. In the presence of 1 mM free Mg2+ activation of Na+,K+-ATPase and modification of the kinetics were observed: the biphasic curve tended to disappear and to become of the Michaelis-Menten type. The apparent Km for Mg APT2- was 0.36 mM and the Vmax 34.5 mumol.h-1.mg protein-1. In the presence of 10 mM free Mg2+ a decrease in the Vmax was observed without any effect on the apparent Km for Mg APT2-. It is concluded that the same incubation medium may be used to assay LPM N+,K+-ATPase from hamster and rat and that the addition of 1 mM free Mg2+ to the incubation medium is recommended to obtain Michaelis-Menten kinetics in order to eliminate complex kinetics due to the absence of free Mg2+.  相似文献   

3.
Five healthy males performed four 30-s bouts of maximal isokinetic cycling with 4 min rest between each bout. Arterial and femoral venous blood was sampled during and for 90 min following exercise. During exercise, arterial erythrocyte [K+] increased from 117.0 +/- 6.6 mequiv./L at rest to 124.2 +/- 5.9 mequiv./L after the second exercise bout. Arterial erythrocyte [K+] returned to the resting values during the first 5 min of recovery. No significant change was observed in femoral venous erythrocyte [K+]. Arterial erythrocyte lactate concentration ([Lac-]) increased during exercise from 0.2 +/- 0.1 mequiv./L peaking at 9.5 +/- 1.5 mequiv./L at 5 min of recovery, after which the values returned to control. Femoral venous erythrocyte [Lac-] changed in a similar fashion. Arterial erythrocyte [Cl-] rose during exercise to 76 +/- 3 mequiv./L and returned to resting values (70 +/- 2 mequiv./L) by 25 min recovery. During exercise there was a net flux of Cl- into the erythrocyte. We conclude that erythrocytes are a sink for K+ ions leaving working muscles. Furthermore, erythrocytes function to transport Lac- from working muscle and reduce plasma acidosis by uptake of Cl-. The erythrocyte uptake of K+, Lac-, and Cl- helps to maintain a concentration difference between plasma and muscle, facilitating diffusion of Lac- and K+ from the interstitial space into femoral venous plasma.  相似文献   

4.
A maximal rate of the ouabain-sensitive 204-Tl influx in human erythrocytes can be attained at trace concentrations of Tl+ in Mg2+ isotonic media free of K+ and Na+. The maximal influx of Tl+ from isotonic Mg(NO3)2 at 20 degrees C and pH 7.4 was 0.45 mM.l(-1).h-1 with a Km of 0.025 mM. In contrast to the active influx of Tl+, the passive Tl+ fluxes were neither saturated nor influenced by external cations in the range of concentrations of Tl+ and K+ studied. The rate constants of Tl+ passive fluxes in human and cat erythrocytes can be related to pH by the equation log kin(OUT)= -A + B.pH, where A and B are empirical constants for particular conditions. The apparent activation energy was 16 and 11 kcal/mol in sulphate and nitrate media, respectively. Tl+ and the alkali metal cations seem to overcome a common barrier in the erythrocyte membrane. Nevertheless, the rate of the passive penetration of Tl+ is about two orders of magnitude faster than those of K+ or Rb+. An extra non-Coulombic interaction between Tl+ and membrane ligands appears to be involved providing an accumulation of Tl+ somewhere in the vicinity of the membrane barrier and increasing the diffusion fluxes of Tl+ in both directions.  相似文献   

5.
We have characterized the asymmetric effect of Ca2+ on passive K+ permeability in erythrocyte membranes, using inside out and right-side out vesicles. Ca2+, but not Mg2+, can induce an increase in K+ uptake in inside out vesicles. The half-maximal concentration of Ca2+ required to induce the K+ uptake is 0.2 mM, and the permeability increase is not specific for K+. Thus, the Ca2+- induced permeation process in inside out vesicles is changed from that in the energy-depleted intact cell which requires only micromolar concentrations of Ca2+ and is specific for K+. Removal of spectrin had no effect on the vesicle permeability increase due to Ca2+. Studies with N-ethylmaleimide show that the vesicle channel openings is mediated by a protein and passage is controlled by sulfhydryl groups; furthermore, the Ca2+-induced vesicle pathway is distinct from the normal channel for passive K+ leak in the absence of Ca2+. The protein is sensitive to its phospholipid environment since removal of easily accessible phospholipid head groups on the cytoplasmic face of the vesicles inhibits the Ca2+ -stimulated channel opening.  相似文献   

6.
Choline and acetylcholine metabolism in rat neostriatal slices   总被引:4,自引:3,他引:1  
Choline (Ch) uptake and release and acetylcholine (ACh) synthesis and release have been studied by gas chromatography mass spectrometry (GCMS) in slices of rat neostriatum in vitro to assess the effects of depolarization by 25 mM K+ and the influence of elevated concentrations of Ch in the incubation medium. During the first 60 min after preparation, 25 mM K+ increased ACh release by 182% and reduced ACh levels by 40%. The rate of ACh synthesis was unchanged. After a 1-h equilibration period, the rate of ACh synthesis was considerably less (2.41 nmol mg-1 h-1, compared to 9.78 nmol mg-1 h-1). Exposure to 25 mM K+ during the second hour increased the rate to 6.47 nmol mg-1 h-1. During the first 10 min of exposure to 25 mM K+, ACh synthesis was reduced, regardless of incubation. Increasing concentrations of external [2H4]Ch apparently favored initial rates of net ACh synthesis, since the rank order of initial net ACh synthesis rates is the same as the rank order of external [2H4] Ch concentration under both normal and depolarized conditions. However, the only significant effect of external [2H4]Ch on ACh metabolism was that it increased ACh release during the initial 10 min, when the preparation was depolarized with K+. The efflux of endogenous [2H0]Ch was increased initially (10 min) and slowed over a 60-min period by 25 mM K+, and increased when [2H4]Ch in the medium was increased. Changes in ACh synthesis and release were dependent upon the time exposure of slices to high K+, and the results suggest that Ch favors initial rates of ACh synthesis, but that Ch influences ACh release primarily under conditions of stress (i.e., depolarization).  相似文献   

7.
Rates of urea synthesis were determined in periportal and pericentral regions of the liver lobule in perfused liver from fed, phenobarbital-treated rats by measuring the extra O2 consumed upon infusion of NH4Cl with miniature O2 electrodes and from decreases in NADPH fluorescence detected with micro-light-guides. Urea synthesis by the perfused rat liver supplemented with lactate (5 mM), ornithine (2 mM) and methionine sulfoximine (0.15 mM), an inhibitor of glutamine synthetase, was stimulated by stepwise infusion of NH4Cl at doses ranging from 0.24 mM to 3.0 mM. A good correlation (r = 0.92) between decreases in NADPH fluorescence and urea production was observed when the NH4Cl concentration was increased. Sublobular rates of O2 uptake were determined by placing miniature oxygen electrodes on periportal or pericentral regions of the lobule on the liver surface, stopping the flow and measuring decreases in oxygen tension. From such measurements local rates of O2 uptake were calculated in the presence and absence of NH4Cl and local rates of urea synthesis were calculated from the extra O2 consumed in the presence of NH4Cl and the stoichiometry between O2 uptake and urea formation. Rates of urea synthesis were also estimated from the fractional decrease in NADPH fluorescence, caused by NH4Cl infusion in each region, measured with micro-light-guides and the rate of urea synthesis by the whole organ. When perfusion was in the anterograde direction, maximal rates of urea synthesis, calculated from changes in fluorescence, were 177 +/- 31 mumol g-1 h-1 and 61 +/- 24 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, however, rates were 76 +/- 23 mumol g-1 h-1 in periportal areas and 152 +/- 19 mumol g-1 h-1 in pericentral regions. During perfusion in the anterograde direction, urea synthesis, calculated by changes in O2 uptake, was 307 +/- 76 mumol g-1 h-1 and 72 +/- 34 mumol g-1 h-1 in periportal and pericentral regions, respectively. When perfusion was in the retrograde direction, urea was synthesized at rates of 54 +/- 17 mumol g-1 h-1 and 387 +/- 99 mumol g-1 h-1 in periportal and pericentral regions, respectively. Thus, maximal rates of urea synthesis were dependent upon the direction of perfusion. In addition, rates of urea synthesis were elevated dramatically in periportal regions when the flow rate per gram liver was increased (e.g. 307 versus 177 mumol g-1 h-1).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effect of the plasma membrane potential delta psi p on the transport rate and steady state distribution of Li+ was assessed in rat cortical synaptosomes. Up to 15 mM Li+ failed to saturate Li+ influx into polarized synaptosomes in a Na+-based medium with 3 mM external K+. Veratridine increased and tetrodotoxin, ouabain, or high external K+ decreased the rate of Li+ influx. At steady state, Li+ was concentrated about 3-fold in resting synaptosomes at 0.3 to 1 mM Li+ externally. Subsequent depolarization of the plasma membrane by veratridine or high external K+ induced an immediate release of Li+. When graded depolarizations were imposed onto the plasma membrane by varying concentrations of ouabain, veratridine, or external K+, steady state distribution of Li+ was linearly related with K+ distribution or electrochemical activity coefficients. It was concluded that uptake rate and steady state distribution of Li+ depend significantly on delta psi p. However, Li+ gradients were lower than predicted from delta psi p, suggesting that (secondary) active transport systems counteracted passive equilibration by uphill extrusion of Li+. The electrochemical potential difference delta mu Li+ maintained at a delta psi p of -72 mV was calculated to 4.2 kJ/mol of Li+. At physiological external K+, Li+ was not actively transported by the sodium pump. The ouabain sensitivity resulted from the coupling of Li+ uptake to the pump-dependent K+ diffusion potential. In low K+ and K+-free media, however, active transport of Li+ by the sodium pump contributed to total uptake. In the absence of K+, Li+ substituted for K+ in generating a delta psi p of -64 mV maximally, as calculated from TPMP+ distribution at 40 mM external Li+. Since Li+ gradients were far too low to account for a diffusion potential, it was assumed that Li+ gave rise to an electrogenic pump potential.  相似文献   

9.
Exercise training reduces the muscle insulin resistance of the obese Zucker rat. The purpose of the present study was to determine whether the magnitude of this training response is exercise intensity specific. Obese Zucker rats were randomly divided into sedentary (SED), low-intensity (LI), and high-intensity (HI) exercise groups. For the LI rats, exercise training consisted of running on a rodent treadmill at 18 m/min up an 8% grade for 90 min. Rats in the HI group ran at 24 m/min up an 8% grade for four 17-min bouts with 3 min between bouts. Both exercise groups performed the same amount of work and trained 5 days/wk for 7 wk. To evaluate muscle insulin resistance, rat hindlimbs were perfused for 30 min with perfusate containing 6 mM glucose (0.15 mu Ci of D-[14C(U)] glucose/ml) and either a maximal (10.0 mU/ml) or a submaximal (0.50 mU/ml) insulin concentration. Perfusions were performed 48-56 h after the last exercise bout and a 12-h fast. In the presence of 0.5 mU/ml insulin, the rate of muscle glucose uptake was found to be significantly faster for the HI (9.56 +/- 0.66 mumol.h-1.g-1) than for the LI (7.72 +/- 0.65 mumol.h-1.g-1) and SED (6.64 +/- 0.44 mumol.h-1.g-1) rats. The difference in glucose uptake between the LI and SED rats was not significant. In the presence of 10.0 mU/ml insulin, the rate of glucose uptake was significantly faster for the HI (16.43 +/- 1.02 mumol.h-1.g-1) than for the LI rats (13.76 +/- 0.84 mumol.h-1.g-1) and significantly faster for the LI than for the SED rats (11.02 +/- 0.35 mumol.h-1.g-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Energetic metabolism during effort is impaired in patients with left ventricular dysfunction (Dysf), but data have been lacking up to now on the relative anaerobic vs. aerobic contribution to total energy release during supramaximal effort. Recently, the maximal accumulated oxygen deficit (MAOD) has been shown to be measurable in Dysf patients, making it possible to evaluate the anaerobic/aerobic interaction under conditions of maximal stress of both anaerobic and aerobic metabolic pathways in this population. Nineteen Dysf patients and 17 normal patients (N) underwent one ramp cardiopulmonary, three moderate-intensity constant-power, and three supramaximal constant-power (1- to 2-min, 2- to 3-min, and 3- to 4-min duration) exercise tests. MAOD was the difference between accumulated O(2) demand (accO(2)dem; estimated from the moderate-intensity O(2) uptake/watt relationship) and uptake during supramaximal tests. Percent anaerobic (%Anaer) and aerobic (%Aer) energetic release were [(MAOD/accO(2)dem).100] and 100 - %Anaer, respectively. MAOD did not vary between 1-2, 2-3, and 3-4 min supramaximal tests, whereas accO(2)dem increased significantly with and was linearly related to test duration in both Dysf and N. Consequently, %Anaer and %Aer decreased and increased, respectively, with increasing test duration but did not differ between Dysf and N in 1-2 min, 2-3 min, and 3-4 min tests. Our study demonstrates a similar relative anaerobic vs. aerobic contribution to total energy release during supramaximal effort in Dysf and N. This finding indicates that energetic metabolism during supramaximal exercise is exercise tolerance independent and that relative anaerobic vs. aerobic contribution in this effort domain remains the same within the physiology- or pathology-induced limits to individual peak exercise performance.  相似文献   

11.
1. Proteolysis was measured as [3H]leucine release from isolated perfused livers from rats, which had been labeled in vivo by an intraperitoneal injection of [3H]leucine about 16 h prior to the perfusion experiment. In livers from fed rats, insulin (35 nM) inhibited [3H]leucine release by 24.5 +/- 1.3% (n = 15) and led to an amiloride-sensitive, bumetanide-sensitive and furosemide-sensitive net K+ uptake of 5.53 +/- 0.31 mumol.g-1 (n = 15). Both the insulin effects on net K+ uptake and on [3H]leucine release were diminished by about 65% or 55% in presence of furosemide (0.1 mM) or bumetanide (5 microM), respectively. The insulin-induced net K+ uptake was virtually abolished in the presence of amiloride (1 mM) plus furosemide (0.1 mM). 2. In perfused livers from 24-h-starved rats, both the insulin-stimulated net K+ uptake and the insulin-induced inhibition of [3H]leucine release were about 80% lower than observed in experiments with livers from fed rats. The insulin effects on K+ balance and [3H]leucine release were not significantly influenced in the presence of glycine (2 mM), although glycine itself inhibited [3H]leucine release by 30.3 +/- 0.3% (n = 4) and 13.8 +/- 1.2% (n = 5) in livers from starved and fed rats, respectively. When livers from fed rats were preswollen by hypoosmotic perfusion (225 mOsmol.l-1), both the insulin-induced net K+ uptake and the inhibition of [3H]leucine release were diminished by 50-60%. 3. During inhibition of [3H]leucine release by insulin, further addition of glucagon (100 nM) led to a marked net K+ release from the liver (3.82 +/- 0.24 mumol.g-1), which was accompanied by stimulation of [3H]leucine release by 16.4 +/- 4.6% (n = 4). 4. Ba2+ (1 mM) infusion led to a net K+ uptake by the liver of 3.2 +/- 0.2 mumol.g-1 (n = 4) and simultaneously inhibited [3H]leucine release by 12.4 +/- 1.7% (n = 4). 5. There was a close relationship between the Ba2+ or insulin-induced net K+ uptake and the degree of inhibition of [3H]leucine release, even when the K+ response to insulin was modulated by bumetanide, furosemide, glucagon, hypotonic or glycine-induced cell swelling or the nutritional state. 6. The data suggest that the insulin-induced net K+ uptake involves activation of both NaCl/KCl cotransport and Na+/H+ exchange.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
To document the possible influence of a single episode of maximal aerobic stress on the serum lecithin:cholesterol acyltransferase (LCAT) activity in subjects with differing histories of training, two groups of healthy male adults [controls (C), n = 18, 28.6 years, SD 5.2, 50.1 ml.kg-1.min-1 maximal O2 uptake (VO2max), SD 5.3; endurance trained athletes (T), n = 18, 31.4 years, SD 8.8, 65.0 ml.kg-1.min-1 VO2max, SD 2.8] were examined in a maximal aerobic stress test. In addition to the routine assessment of lipid status, LCAT activity was measured immediately before and after exercise. At rest nearly identical LCAT activity values were found in both groups: C 64.4 nmol.ml-1.h-1, SD 16.7 vs T 65.0 nmol.ml-1.h-1, SD 20.9. The post-exercise LCAT values induced by the maximal stress test increased significantly to (C) 95.7 nmol.ml-1.h-1, SD 23.5, +48.6%, P less than 0.001; (T) 83.5 nmol.ml-1.h-1, SD 24.3, +29.1%, P less than 0.01. Neither the pre nor the postexercise individual LCAT activity values showed any significant correlation to the corresponding data on physical performance.  相似文献   

13.
Benzoate stimulates glutamate release from perfused rat liver.   总被引:1,自引:1,他引:0       下载免费PDF全文
In isolated perfused rat liver, benzoate addition to the influent perfusate led to a dose-dependent, rapid and reversible stimulation of glutamate output from the liver. This was accompanied by a decrease in glutamate and 2-oxoglutarate tissue levels and a net K+ release from the liver; withdrawal of benzoate was followed by re-uptake of K+. Benzoate-induced glutamate efflux from the liver was not dependent on the concentration (0-1 mM) of ammonia (NH3 + NH4+) in the influent perfusate, but was significantly increased after inhibition of glutamine synthetase by methionine sulphoximine or during the metabolism of added glutamine (5 mM). Maximal rates of benzoate-stimulated glutamate efflux were 0.8-0.9 mumol/min per g, and the effect of benzoate was half-maximal (K0.5) at 0.8 mM. Similar Vmax. values of glutamate efflux were obtained with 4-methyl-2-oxopentanoate, ketomethionine (4-methylthio-2-oxobutyrate) and phenylpyruvate; their respective K0.5 values were 1.2 mM, 3.0 mM and 3.8 mM. Benzoate decreased hepatic net ammonia uptake and synthesis of both urea and glutamine from added NH4Cl. Accordingly, the benzoate-induced shift of detoxication from urea and glutamine synthesis to glutamate formation and release was accompanied by a decreased hepatic ammonia uptake. The data show that benzoate exerts profound effects on hepatic glutamate and ammonia metabolism, providing a new insight into benzoate action in the treatment of hyperammonaemic syndromes.  相似文献   

14.
In rats anaesthetized with +-chloralose the changes in extracellular pH and K+ in spinal cord dorsal horn were studied using pH and K+ ion-selective electrodes. The addition of 20% CO2 into inhaled air decreased the basal level of [pH]0 from 7.35 +/- 0.01 to 6.78 +/- 0.09 pH units and increased the basal level of [K+]0 from 3.1 +/- 0.1 to 5.14 +/- 0.8 mM. Electrocutaneous supramaximal (10 mA) simulation of both hind paws with the frequency 30 and 100 Hz induced the shift in the concentration of H+ and K+ by 0.15-0.2 unit and 2-2.5 mM, respectively. Under hypercapnia this shift of pH decreased by 36.9 +/- 8.5% at 30 Hz frequency of electrocutaneous stimulation and by 41.9 +/- 6.1% at 100 Hz frequency. The K+ shift decreased by 11.5 +/- 1.3% and by 17.3 +/- 1.5% under similar conditions. Hypercapnia induced by addition of 20% CO2 into inhaled air decreased also the focal potential amplitude by 16.8 +/- 4%. Thus, hypercapnia induces the increase of [K+]0 and [pH]0 and the decrease of recorded indicators in response to electrocutaneous stimulation. Total depression of synaptic transmission and analgetic effect occur due to these changes of ions distribution.  相似文献   

15.
The volume regulatory response of the Ehrlich ascites tumor was studied in KCl-depleted, Na+-enriched cells. Subsequent incubation in K+-containing NaCl medium results in the reaccumulation of K+, Cl-, water and the extrusion of Na+. The establishment of the physiological steady state is due primarily to the activity of 2 transport systems. One is the Na/K pump (KM for K+o = 3.5 mM; Jmax = 30.1 mEq/kg dry min), which in these experiments was coupled 1K+/1 Na+. The second is the Cl--dependent (Na+ + K+) cotransport system (KM for K+o = 6.8 mM; Jmax = 20.8 mEq/kg dry min) which mediates, in addition to net ion uptake in the ratio of 1K+:1Na+:2Cl-, the exchange of K+i for K+o. The net passive driving force on the cotransport system is initially inwardly directed but does not decrease to zero at the steady state. This raises the possibility of the involvement of an additional source of energy. Although cell volume increases concomitant with net ion uptake, this change does not appear to be a major factor regulating the activity of the cotransport system.  相似文献   

16.
Gluconeogenesis predominates in periportal regions of the liver lobule   总被引:2,自引:0,他引:2  
Rates of gluconeogenesis from lactate were calculated in periportal and pericentral regions of the liver lobule in perfused rat livers from increases in O2 uptake due to lactate. When lactate (0.1-2.0 mM) was infused into livers from fasted rats perfused in either anterograde or the retrograde direction, a good correlation (r = 0.97) between rates of glucose production and extra O2 uptake by the liver was observed as expected. Rates of oxygen uptake were determined subsequently in periportal and pericentral regions of the liver lobule by placing miniature oxygen electrodes on the liver surface and measuring the local change in oxygen concentration when the flow was stopped. Basal rates of oxygen uptake of 142 +/- 11 and 60 +/- 4 mumol X g-1 X h-1 were calculated for periportal and pericentral regions, respectively. Infusion of 2 mM lactate increased oxygen uptake by 71 mumol X g-1 X h-1 in periportal regions and by 29 mumol X g-1 X h-1 in pericentral areas of the liver lobule. Since the stoichiometry between glucose production and extra oxygen uptake is well-established, rates of glucose production in periportal and pericentral regions of the liver lobule were calculated from local changes in rates of oxygen uptake for the first time. Maximal rates of glucose production from lactate (2 mM) were 60 +/- 7 and 25 +/- 4 mumol X g-1 X h-1 in periportal and pericentral zones of the liver lobule, respectively. The lactate concentrations required for half-maximal glucose synthesis were similar (0.4-0.5 mM) in both regions of the liver lobule in the presence or absence of epinephrine (0.1 microM). In the presence of epinephrine, maximal rates of glucose production from lactate were 79 +/- 5 and 59 +/- 3 mumol X g-1 X h-1 in periportal and pericentral regions, respectively. Thus, gluconeogenesis from lactate predominates in periportal areas of the liver lobule during perfusion in the anterograde direction; however, the stimulation by added epinephrine was greatest in pericentral areas. Differences in local rates of glucose synthesis may be due to ATP availability, as a good correlation between basal rates of O2 uptake and rates of gluconeogenesis were observed in both regions of the liver lobule in the presence and absence of epinephrine. In marked contrast, when livers were perfused in the retrograde direction, glucose production was 28 +/- 5 mumol X g-1 X h-1 in periportal areas and 74 +/- 6 mumol X g-1 X h-1 in pericentral regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Leucine metabolism during fasting and exercise   总被引:2,自引:0,他引:2  
Whole body leucine kinetics were examined in seven healthy young men while in a 14-h postabsorptive state (PAS) and after a 3.5-day fast (FS). Subjects received a primed constant intravenous infusion of L-[1-13C]leucine while resting for 3 h and then while exercising on a cycle ergometer at 45% maximal O2 uptake to exhaustion. Blood samples drawn during isotopic steady state were analyzed for 13C enrichment of leucine and alpha-ketoisocaproic acid, and expired gas samples were analyzed for 13CO2. Resting leucine flux was higher in the FS, and there was a slight increase in leucine oxidation. During exercise, leucine flux did not differ between PAS and FS but leucine oxidation rose markedly. In the FS, leucine oxidation was 25 +/- 7 (SD) mumol.kg-1.h-1 at rest and rose to 75 +/- 21 mumol.kg-1.h-1 during exercise; in the PAS, oxidation was 20 +/- 5 mumol.kg-1.h-1 at rest and 52 +/- 17 mumol.kg-1.h-1 during exercise. These data indicate that the high rate of leucine oxidation previously found during exercise was increased further by a 3.5-day fast.  相似文献   

18.
The transport of Cd2+ and the effects of this ion on secretory activity and metabolism were investigated in beta cell-rich pancreatic islets isolated from obese-hyperglycemic mice. The endogenous cadmium content was 2.5 mumol/kg dry wt. After 60 min of incubation in a Ca2+-deficient medium containing 2.5 microM Cd2+ the islet cadmium content increased to 0.18 mmol/kg dry wt. This uptake was reduced by approx. 50% in the presence of 1.28 mM Ca2+. The incorporation of Cd2+ was stimulated either by raising the concentration of glucose to 20 mM or K+ to 30.9 mM. Whereas D-600 suppressed the stimulatory effect of glucose by 75%, it completely abolished that obtained with high K+. Only about 40% of the incorporated cadmium was mobilized during 60 min of incubation in a Cd2+-free medium containing 0.5 mM EGTA. It was possible to demonstrate a glucose-induced suppression of Cd2+ efflux into a Ca2+-deficient medium. Concentrations of Cd2+ up to 2.5 microM did not affect glucose oxidation, whereas, there was a progressive inhibition when the Cd2+ concentration was above 10 microM. Basal insulin release was stimulated by 5 microM Cd2+. At a concentration of 160 microM, Cd2+ did not affect basal insulin release but significantly inhibited the secretory response to glucose. It is concluded that the beta cell uptake of Cd2+ is facilitated by the activation of voltage-dependent Ca2+ channels. Apparently, the accumulation of Cd2+ mimics that of Ca2+ also involving a component of intracellular sequestration promoted by glucose.  相似文献   

19.
We have pharmacologically characterized voltage sensitive calcium channels (VSCCs) in GH3 cells, an anterior pituitary clonal cell line known to secrete prolactin and growth hormone. Raising the medium K+ concentration from 5 to 50 mM caused an immediate increase in net 45Ca2+ uptake which remained apparent over a 15 minute time course. 45Ca2+ uptake was maximally stimulated nearly 10-fold over basal levels. This K+-induced stimulation of Ca2+ uptake was not prevented by 10-5M tetrodotoxin or by replacing sodium with choline in the assay medium. Ca2+ uptake was, however, inhibited by several VSCC antagonists: nitrendipine, D-600, diltiazem and Cd2+. Further, the novel dihydropyridine VSCC agonists, BAY K8644 and CGP 28392, enhanced 50 mM K+-stimulated 45Ca2+ uptake and these effects were blocked by nitrendipine.  相似文献   

20.
Na movement across the plasma membranes of confluent monolayers of monkey kidney epithelial cells (BSC-1) was studied using 22Na+ uptake and efflux techniques in the presence of 10(-4) M ouabain. In the presence of 28 mM bicarbonate, uptake was inhibited by both 10(-3) M amiloride and 10(-3) M 4,4'diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In DIDS-pretreated cells, 10(-3) M amiloride led to a further reduction of 22Na+ uptake, while 10(-5) furosemide was ineffective. DIDS also inhibited sodium efflux, indicating that the DIDS-sensitive pathway mediates both influx and efflux of 22Na+. DIDS-sensitive 22Na+ uptake, as studied in the presence of both 10(-4) M ouabain and 10(-3) M amiloride, was abolished by the absence of bicarbonate, which could not be substituted by other plasma membrane-permeable buffers. In 28 mM HCO3-, DIDS-sensitive uptake of 28 mM Na+ was cis-inhibited by 124 mM Na+, but no significant inhibition by K+ or Li+ was found. DIDS-sensitive 22Na+ uptake was a saturable function of both Na+ concentration (apparent Km between 20 and 40 mM at 28 mM HCO3-) and HCO3- concentration (apparent Km between 7 and 14 mM at 151 mM Na+). Intracellular microelectrode measurements showed that net Na+ transport in the presence of HCO3- is electrogenic, i.e. that there is anion cotransport with Na+. This effect is abolished by 1 mM DIDS. It is concluded that monkey kidney epithelial cells possess a stilbene-sensitive, electrogenic sodium bicarbonate symport, which may play an important role in bicarbonate reabsorption in the mammalian kidney.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号