首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The changes in both the levels of some free amino acids and their metabolism in the rat brain during the first 24 hr of postnatal life were studied. The content of glutamic acid decreased for the first 2 hr; it remained at the lowest level for the next 4 hr, when it began to increase. The content of alanine decreased for the first 6 hr and approached the adult level. Oxygen consumption, glucose oxidation, and pyruvate formation in the cerebral slices of the 24-hr-old rats were as much as 150% of that of the 19-day-old fetus. The distribution profile of radioactivity incorporated into the cerebral amino acids from the subarachnoid-injected [U14C]glucose was also changed. In the 2- and 6-hr-old rats, 50% of the total radio-activity recovered in the free amino acids was in alanine. Its rate decreased to 30% in the 24-hr-old and was 2% in the adult, while the radioactivity incorporated into glutamic acid increased. Alanine aminotransferase activity started to increase at birth and had the highest level at 24 hr after birth. It then decreased and finally reached the same level as shown at birth. However, aspartate aminotransferase increased during the first 6 hr after birth and did not change until the end of the first day of life.  相似文献   

9.
10.
11.
Treatment of relatively concentrated aqueous solutions of O-phospho-serine (50 mM), aspartic acid (100 mM) or glutamic acid (100 mM) with carbonyldiimidazole leads to the formation of an activated intermediate that oligomerizes efficiently. When the concentration of amino acid is reduced tenfold, few long oligomers can be detected. Positively-charged cetyltrimethyl ammonium bromide micelles concentrate the negatively-charged activated intermediates of the amino acids at their surfaces and catalyze efficient oligomerization even from dilute solutions.  相似文献   

12.
The aspartic acid, glutamic acid, and gamma-aminobutyric acid (GABA) contents were determined in four central auditory system regions in rats with transient neonatal hypothyroidism compared with control ones: the ventral and dorsal parts of the cochlear nucleus, the central nucleus of the inferior colliculus, the auditory cortex, and in an extra-auditory structure, the substantia nigra pars reticulata. The animals were sacrificed at 50 days of age, brain tissue samples were taken out by microdissection, and the free amino acids were extracted. The amino acid content was assessed by double-isotope labelling following two-dimensional thin-layer chromatography separation. GABA content was significantly decreased in both cochlear nucleus regions and glutamic acid was elevated in the inferior colliculus. Neonatal hypothyroidism had no significant effect on the aspartic acid levels in the regions studied. The results suggest an effect of neonatal hypothyroidism on regional contents of free amino acids known as candidate neurotransmitters in the auditory system.  相似文献   

13.
The amino acids lysine and glycine are reported to react with glucose at physiological pH and temperature and undergo non-enzymic glycation. Three other amino acids present in relatively larger amounts in the lens i.e. alanine, aspartic acid and glutamic acid were also found to undergo non-enzymic glycation as found by incorporation of uniformly labelled (U-[14C]) glucose into the amino acids. The glucose incorporation was 1.6 to 2.5% for alanine, 35 to 50% for aspartic acid and 2.3 to 3.3% for glutamic acid. Each amino acid of varying concentrations lowered the extent ofin vitro glycation of lens proteins significantly in glucose-treated homogenates of normal lens from humans. The decrease in glycation for alanine was between 32 and 69%, that for aspartate was between 18 and 74%, and for glutamate was between 52 to 74%. Decreased glycation was greater for higher concentrations of glucose. Scavenging of intracellular glucose and decreasing the extent of glycation of lens proteins could be the mechanism of action by which the amino acids alanine, aspartic acid and glutamic acid could exercise a beneficial effect on cataract and diabetic retinopathy.  相似文献   

14.
The thin-layer electrophoretic separation at pH 4.8 of brain extracts and a procedure for fluorescent staining of the plates with fluorescamine are described for the rapid routine determination of 4-aminobutyric acid (GABA), glutamic acid and aspartic acid in brain extracts and in particulate fractions of brain tissue. Automated sample application, electrophoretic separation using two chambers, and quantitation by in situ fluorescence scanning allows the assay of 280 samples within three working days. The method is reproducible (S.D. <8% of the mean) within the range of 0.2–2 nmole per spot. The staining procedure can be applied to a variety of related analytical problems. The method has proved useful for the determination of the specific radioactivities of GABA, glutamic acid and aspartic acid in metabolic studies.  相似文献   

15.
16.
17.
18.
19.
The x-ray structure of the EcoRI endonuclease-DNA complex (3) suggests that hydrogen bonds between amino acids, glutamic acid 144, arginine 145, and arginine 200, and major groove base moieties are the molecular determinants of specificity. We have investigated residue 144 using aspartate and glutamine substitutions introduced by site-directed mutagenesis. Substitution with glutamine results in a null phenotype (at least a 2000-fold reduction in activity). On the other hand, the aspartic acid mutant (ED144) retained in vivo activity. Substrate binding and catalytic studies were done with purified ED144 enzyme. The affinity of the ED144 enzyme for the canonical sequence 5'-GAATTC-3' is about 340-fold less than the wild-type (WT) enzyme, while its affinity for nonspecific DNA is about 50 times greater. The ED144 enzyme cleaves one strand in the EcoRI site in plasmid pBR322 with a kcat/Km similar to WT. In contrast to the WT enzyme, the ED144 enzyme dissociates after the first strand cleavage. Partitioning between cleavage and dissociation at the first and second cleavage steps for the ED144 enzyme is extremely salt-sensitive. The altered partitioning results largely from a destabilization of the enzyme-DNA complex, particularly the enzyme-nicked DNA complex, with only small changes in the respective cleavage rates. The hydrogen bonds of Glu-144 are critical, they appear to act cooperatively with other specificity contacts to stabilize the enzyme-DNA complex.  相似文献   

20.
Formation of taurine and isethionic acid in rat brain   总被引:4,自引:0,他引:4  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号