共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Xiucheng Li Tao Huang Guangjian Jiang Weihua Gong Hao Qian Chunping Zou 《Biochemical and biophysical research communications》2013
MG132 as a proteasome inhibitor could induce apoptosis in various cancer cells. This study aimed to discuss the effect of proteasome inhibitor MG132 on the TRAIL-induced apoptosis of human osteosarcoma OS732 cells. MG132 and TRAIL were applied on OS732 cells respectively or jointly. Cell survival rates, changes of cellular shape, cell apoptosis and cell invasion were analyzed, respectively, by 3-(4,5)-dimethylthiahiazo(-z-y1)-2,5-di-phenytetrazoliumromide (MTT) assay, inverted phase contrast microscope, flow cytometry, and transwell invasion chamber methods. The protein levels of DR5, caspase-3, caspase-8, p27kip1 and MMP-9 were measured by Western blot analysis. The results indicated that combination of MG132 and TRAIL had the effect of up-regulating expression of DR5, caspase-3, caspase-8 and p27kip1, down-regulating expression of MMP-9 and inducing apoptosis as well as suppressing the ability of invasion of OS732 cells. The survival rate of combined application of 10 μM MG132 and 100 ng/ml TRAIL on OS732 cells was significantly lower than that of the individual application (p < 0.01). Changes of cellular shape and apoptotic rates also indicated the apoptosis-inducing effect of combined application was much stronger than that of individual application. Cell cycle analysis showed combination of MG132 and TRAIL mostly caused OS732 cells arrested at G2–M-phase. The invasion ability of OS732 cells was restrained significantly in the combined group compared with the individual group and control group. 相似文献
3.
4.
Programmed cell death and the proteasome 总被引:2,自引:0,他引:2
A characteristic feature of apoptotic cell death is the activation of a cascade of cytoplasmic proteases that results in the cleavage of a limited number of target proteins. A central role in these proteolytic events has been assigned to members of the capase family. However, the use of low molecular weight proteasomal inhibitors has also demonstrated that protein degradation or processing by the ubiquitin-proteasome system of the cell has a decisive impact on cell survival and death as well, depending on the cell type and/or the proliferative status of the cells studied. Treatment of proliferating cells with proteasome inhibitors leads to cell death, potentially involving an internal signalling conflict between accumulating levels of the cdk inhibitor p27Kip1 and c-myc. In contrast, in terminally differentiated cells the same compounds have the opposite effect of blocking apoptosis, possibly by preventing proteasome-mediated degradation of a capase inhibitor. In this review the role of proteasome-mediated proteolysis in the dying cell is discussed and apparently conflicting results are integrated into a working hypothesis which functionally locates the proteasome upstream of capase3-like enzymes. 相似文献
5.
Cyclooxygenase-2 (COX-2), involved in the inhibition of apoptosis and, the potentiation of cell growth, is frequently overexpressed in human malignancies including osteosarcoma (OS). We have attempted to identify the anti-proliferation of celecoxib, a selective COX-2 inhibitor, and the combination of celecoxib and cisplatin in MG-63 cells, and to explore the potential molecular mechanisms involved. MG-63 cells were treated with the combination of celecoxib and cisplatin or either agent alone for 48h in serum-supplemented medium. Celecoxib caused G1 phase arrest and significantly inhibited cell growth, as well as potentiating cisplatin-induced apoptosis. The effect was dose-dependent, and apoptotic changes such as DNA fragments and apoptotic bodies were observed. However, downregulation of COX-2 did not occur in cells treated with celecoxib. Phosphoinositide-3-kinase (PI3K)/Akt, survivin, bcl-2 were significantly downregulated in cells treated with the combination of celecoxib and cisplatin, and decreased survivin and bcl-2 levels were found in cells with wortmannin, a specific PI3K inhibitor. Moreover, the decreased expressions of procaspase-9, procaspase-3 and cleaved PARP-1 were detected by Western blot analysis. Therefore, celecoxib exerts its anti-tumor activities through COX-2-independent mechanisms, which may be PI3K/Akt-dependent, and survivin and bcl-2-related. PI3K may be at the center of the celecoxib effects, which play an essential role in the regulation of survivin and Bcl-2. 相似文献
6.
The mechanism of TNF-alpha-mediated chondrocyte apoptosis in human articular cartilage was investigated. First passage OA chondrocytes were treated with actinomycin D or MG132 in combination with TNF-alpha to facilitate cell death. The patterns of apoptosis-related proteins, NF-kappaB activation, and IkappaB degradation were analyzed. Cell death was increased by 0.2 microg/ml of actinomycin D or 20 microM MG132 in combination with TNF-alpha. Apoptosis potentiated by MG132 was more effectively inhibited by caspase inhibitors than that by actinomycin D. MG132 or actinomycin D both led to a significant increase in p53, but the expressions of the p53 response proteins increased only in MG132 treated chondrocytes. TNF-alpha induced chondrocyte IkappaB phosphorylation was unaffected by either MG132 or actinomycin D. MG132, but not actinomycin D, inhibited the chondrocyte IkappaB degradation induced by TNF-alpha and NF-kappaB activation. Our results suggest that MG132 and actinomycin D exert different influences upon TNF-alpha-mediated chondrocyte apoptotic signaling. 相似文献
7.
Detachment of adherent cells from extracellular matrix results in apoptosis, a process termed "anoikis". Resistance to anoikis is implicated in the progression of many malignancies by facilitating the migration and eventual colonization of distant sites. Human kidney epithelial cells 293T, human osteoblast cells hFOB 1.19 and human osteosarcoma cells Saos-2 significantly underwent anoikis when adherence was prevented. But human osteosarcoma MG-63 cells were distinctly anoikis resistant when detached. They formed large aggregates and showed little apoptosis compared to the other cells. When MG-63 cells were in suspension, caspase-8, physically associated with death receptor was activated by cell-matrix detachment, whereas. Caspase-3 and caspase-9 were not activated. Translational level of Bcl-2 significantly increased in a time-dependent manner, but the level of beta-catenin and PI3K did not. Caspase-8 participates in an anoikis-inducing process in MG-63 cells at an early time, and overexpression of Bcl-2 blocks activation of caspase-8 making MG-63 cells anoikis resistant. 相似文献
8.
《Saudi Journal of Biological Sciences》2017,24(4):837-842
Current study was aimed to investigate the effect of dihydromyricetin on hydrogen peroxide induced oxidative stress in the osteosarcoma cells. MTT assay showed that hydrogen peroxide treatment at a concentration of 100 μM caused a significant (p < 0.005) reduction in the viability of MG63 cells. However, reduction in cell viability caused by 100 μM concentration of hydrogen peroxide was completely prevented on incubation with 30 μM dose of dihydromyricetin. Treatment with 100 μM concentration of hydrogen peroxide for 24 h led to condensation of chromatin material, rounding of cell shape and detachment of cells. The results from flow cytometry using annexin V-FITC and PI double staining showed apoptosis induction in 47.84 ± 5.21% cells on treatment with 100 μM concentration of hydrogen peroxide compared to 2.32 ± 0.54% in controlcells. The apoptotic alterations in MG63 cell morphology were prevented significantly on pre-treatment with 30 μM doses of dihydromyricetin for 48 h. Annexin V-FITC and PI staining showed reduction of hydrogen peroxide induced apoptotic cell percentage to 3.07 ± 0.86% on pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin. Western blot analysis showed a significant increase in the activation of caspase-3 and -9 on treatment of MG63 cells for 24 h with 100 μM concentration of hydrogen peroxide. The expression level of Bcl-2 was decreased significantly by 100 μM concentration of hydrogen peroxide in MG63 cells. However, pre-treatment of MG63 cells with 30 μM dose of dihydromyricetin for 48 h significantly prevented hydrogen peroxide induced increase in caspase-3 and -9 levels and reduction in Bcl-2 level. Thus dihydromyricetin prevents hydrogen peroxide induced reduction in viability and induction of apoptosis in MG63 cells through down-regulation of caspase activation and up-regulation of Bcl-2 levels. 相似文献
9.
Lee KW Chung KS Seo JH Yim SV Park HJ Choi JH Lee KT 《Journal of cellular biochemistry》2012,113(9):2835-2844
Sulfuretin, a flavonoid isolated from heartwood of Rhus verniciflua, has been reported to have anti-cancer activities but the underlying molecular mechanism was not clear. In this study, sulfuretin induced apoptosis by activating caspases-8, -9, and -3 as well as cleavage of poly(ADP-ribose) polymerase. Furthermore, treatment with sulfuretin caused mitochondrial dysfunctions, including the loss of mitochondrial membrane potential (ΔΨ(m)), the release of cytochrome c to the cytosol, and the translocations of Bax and tBid. Sulfuretin also activated the extrinsic apoptosis pathway, that is, it increased the expressions of Fas and FasL, the activation of caspase-8, and the cleavage of Bid. Furthermore, blocking the FasL-Fas interaction with NOK-1 monoclonal antibody prevented the sulfuretin-induced apoptosis. The therapeutical effect of sulfuretin in leukemia is due to its potent apoptotic activity through the extrinsic pathway driven by a Fas-mediated caspase-8-dependent pathway. 相似文献
10.
11.
Caspase-8 dependent trail-induced apoptosis in cancer cell lines is inhibited by vitamin C and catalase 总被引:2,自引:0,他引:2
Perez-Cruz I Cárcamo JM Golde DW 《Apoptosis : an international journal on programmed cell death》2007,12(1):225-234
TNF-related apoptosis-inducing ligand (TRAIL/ Apo-2L) is a member of the TNF family of apoptosis-inducing proteins that initiates
apoptosis in a variety of neoplastic cells while displaying minimal or absent cytotoxicity to most normal cells. Therefore,
TRAIL is currently considered a promising target to develop anti-cancer therapies. TRAIL-receptor ligation recruits and activates
pro-caspase-8, which in turn activates proteins that mediate disruption of the mitochondrial membranes. These events lead
to the nuclear and cytosolic damage characteristic of apoptosis. Here we report that TRAIL-induced apoptosis is mediated by
oxidative stress and that vitamin C (ascorbic acid), a potent nutritional antioxidant, protects cancer cell lines from apoptosis
induced by TRAIL. Vitamin C impedes the elevation of reactive oxygen species (ROS) levels induced by TRAIL and impairs caspase-8
activation. We found that the removal of hydrogen peroxide by extracellular catalase during TRAIL-induced apoptosis also impairs
caspase-8 activation. These data suggest that hydrogen peroxide is produced during TRAIL-receptor ligation, and that the increase
of intracellular ROS regulates the activation of caspase-8 during apoptosis. Additionally we propose a mechanism by which
cancer cells might resist apoptosis via TRAIL, by the intake of the nutritional antioxidant vitamin C.
This work was supported by grants from the National Institutes of Health (CA 30388), the New York State Department of Health
(M020113) and the Lebensfeld Foundation. 相似文献
12.
Tianfeng Chen Yum-Shing Wong Wenjie Zheng Jie Liu 《Chemico-biological interactions》2009,180(1):54-57
Selenadiazole derivative is one kind of synthetic organoselenium compounds with potent and broad-spectrum antitumor activity. In this study, we showed that anthrax [1,2-c] [1,2,5] selenadiazolo-6,11-dione (ASDO), an novel selenadiazole derivative, induced time- and dose-dependent apoptotic cell death in MCF-7 human breast carcinoma cells, as indicated by accumulation of sub-G1 cell population, DNA fragmentation, nuclear condensation, caspase activation and PARP cleavage. ASDO-induced apoptosis was significantly inhibited by a general caspase inhibitor z-VAD-fmk, demonstrating the important role of caspases in ASDO-induced apoptotic pathway. Treatment of MCF-7 cells with ASDO resulted in a rapid depletion of mitochondrial membrane potential and release of cytochrome c and Smac/Diablo through up-regulation of Bax, Bad and PUMA expression and down-regulation of Bcl-xl expression. Moreover, ASDO treatment up-regulated the expression levels of total p53 and its target gene p21Waf1. Silencing of p53 activation with RNA interference effectively blocked the ASDO-induced cell PARP cleavage, DNA fragmentation and caspase activation. Furthermore, ASDO-induced apoptosis was interestingly found to be independent of reactive oxygen species production. Taken together, we conclude that ASDO induces MCF-7 cell apoptosis through a p53-dependent and mitochondria-mediated pathway. 相似文献
13.
14.
Lu X Lamontagne J Lu F Block TM 《Apoptosis : an international journal on programmed cell death》2008,13(4):483-494
Serine protease dependent cell apoptosis (SPDCA) is a recently described caspase independent innate apoptotic pathway. It
differs from the traditional caspase dependent apoptotic pathway in that serine proteases, not caspases, are critical to the
apoptotic process. The mechanism of SPDCA is still unclear and further investigation is needed to determine any role it may
play in maintaining cellular homeostasis and development of disease. The current knowledge about this pathway is limited only
to the inhibitory effects of some serine protease inhibitors. Synthetic agents such as pefabloc, AEBSF and TPCK can inhibit
this apoptotic process in cultured cells. There is little known, however, about biologically active agents available in the
cell which can inhibit SPDCA. Here, we show that over-expression of a cellular protein called serine protease inhibitor Kazal
(SPIK/TATI/PSTI) results in a significant decrease in cell susceptibility to SPDCA, suggesting that SPIK is an apoptosis inhibitor
suppressing this pathway of apoptosis. Previous work has associated SPIK and cancer development, indicating that this finding
will help to open the doorway for further study on the mechanism of SPDCA and the role it may play in cancer development. 相似文献
15.
16.
Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells 总被引:7,自引:0,他引:7
Chu ST Cheng HH Huang CJ Chang HC Chi CC Su HH Hsu SS Wang JL Chen IS Liu SI Lu YC Huang JK Ho CM Jan CR 《Life sciences》2007,80(4):364-369
Melittin, a peptide from bee venom, is thought to be a phospholipase A(2) activator and Ca(2+) influx inducer that can evoke cell death in different cell types. However, the effect of melittin on cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and viability has not been explored in human osteoblast-like cells. This study examined whether melittin altered [Ca(2+)](i) and killed cells in MG63 human osteosarcoma cells. [Ca(2+)](i) changes and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Melittin at concentrations above 0.075 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was abolished by removing extracellular Ca(2+). Melittin-induced Ca(2+) entry was confirmed by Mn(2+) quenching of fura-2 fluorescence at 360 nm excitation wavelength which was Ca(2+)-insensitive. The melittin-induced Ca(2+) influx was unchanged by modulation of protein kinase-C activity with phorbol 12-myristate 13-acetate (PMA) and GF 109203X, or inhibition of phospholipase A(2) with AACOCF(3) and aristolochic acid; but was substantially inhibited by blocking L-type Ca(2+) channels. At concentrations of 0.5 microM and 1 microM, melittin killed 33% and 45% of cells, respectively, via inducing apoptosis. Lower concentrations of melittin failed to kill cells. The cytotoxic effect of 1 microM melittin was completely reversed by pre-chelating cytosolic Ca(2+) with BAPTA. Taken together, these data showed that in MG63 cells, melittin induced a [Ca(2+)](i) increase by causing Ca(2+) entry through L-type Ca(2+) channels in a manner independent of protein kinase-C and phospholipase A(2) activity; and this [Ca(2+)](i) increase subsequently caused apoptosis. 相似文献
17.
Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21Waf1/Cip1 mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21Waf1/Cip1 induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer. 相似文献
18.
19.
Miller CP Manton CA Hale R Debose L Macherla VR Potts BC Palladino MA Chandra J 《Chemico-biological interactions》2011,(1):58-68
Marizomib (NPI-0052) is a naturally derived irreversible proteasome inhibitor that potently induces apoptosis via a caspase-8 and ROS-dependent mechanism in leukemia cells. We aim to understand the relationship between the irreversible inhibition of the proteasome and induction of cell death in leukemia cells by using analogs of marizomib that display reversible and irreversible properties. We highlight the importance of sustained inhibition of at least two proteasome activities as being key permissive events for the induction of the apoptotic process in leukemia cells. These data provide the basis for the development of new approaches to generate more effective anti-proteasome therapies. 相似文献
20.
Laura Bonfili Manila Amici Valentina Cecarini Massimiliano Cuccioloni Rosalia Tacconi Mauro Angeletti Evandro Fioretti Jeffrey N. Keller Anna Maria Eleuteri 《Biochimie》2009,91(9):1131-1144
Natural occurring modulators of proteasome functionality are extensively investigated for their implication in cancer therapy. On the basis of our previous evidences both on proteasomal inhibition by monomeric polyphenols, and on the characterization of wheat sprout hydroalcoholic extract, herein we thoroughly report on a comparative study of the effect of wheat sprout extract on both normal and tumour cells. Treatment of isolated 20S proteasomes with wheat sprout extracts induced a gradual inhibition of all proteasome activities. Next, two wheat sprout extract components were separated: a polyphenol and a protein fraction. Both components exerted an in vitro inhibitory effect on proteasome activity. HeLa tumour cells and FHs 74 Int normal cells were exposed to both fractions, resulting in different rates of proteasome inhibition, with tumour cells showing a significantly higher degree of proteasome impairment and apoptosis induction. Furthermore, a decrease in proteasome activities and in cell survival of the human plasmacytoma RPMI 8226 cell line, upon the same treatments, was observed. Collectively, our results provide additional evidences supporting the possible use of natural extracts as coadjuvants in cancer treatments. 相似文献