首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We constructed a set of polyomavirus mutants with alterations in the DNA sequences encoding large T-antigen. The mutant genomes were cloned and propagated as recombinants of plasmid pBR322, and the presence of the mutations was confirmed by nucleotide sequence analysis. To facilitate the analysis of defects in the function of large T-antigen, the dl1061 deletion was introduced into the mutant genomes. This deletion restricts the early gene expression to the synthesis of large T-antigen (Nilsson and Magnusson, EMBO J. 2:2095-2101, 1983). The mutant large T-antigens were identified after radioactive labeling. Their functional characterization was based on analysis of DNA binding, activity in the replication of viral DNA, and cellular localization. The native large T-antigen, which is 785 amino acid residues long, binds specifically to the regulatory region of polyomavirus DNA. This binding was significantly reduced by the deletion of amino acid residues 136 to 260. Nevertheless, this mutant large T-antigen was active in the initiation of viral DNA replication. Conversely, all of the mutants in this study that produced large T-antigens with alterations in the carboxy-terminal 146 amino acid residues had normal DNA-binding properties. However, these mutants were inactive in viral DNA synthesis and also inhibited the replication of wild-type DNA in cotransfected cells. The analysis of mutant dl2208 (Nilsson et al., J. Virol. 46:284-287, 1983) led to unexpected results. Its large T-antigen, missing amino acid residues 191 to 209, was overproduced. Although the protein had normal DNA-binding properties, it was not entering the cell nucleus normally. Furthermore, the dl2208 DNA replication was extremely low in the absence of small and middle T-antigens but was normal in the presence of these proteins.  相似文献   

3.
J M Keller  J C Alwine 《Cell》1984,36(2):381-389
We have examined the activation of the SV40 late promoter by inserting the late promoter and the viral origin of replication into chloramphenicol acetyltransferase (CAT) transient expression vectors. Very little late promoter activity was detected in CV-1 cells, compared with high activity in COS cells, in which replication occurs due to endogenous T antigen. Nonreplicative counterparts of these plasmids, containing a mutated origin of replication, produced significantly more late promoter activity in COS cells than any of the plasmids in CV-1 cells. When plasmids were cotransfected into CV-1 cells with a plasmid that supplies T antigen, the nonreplicative plasmid displayed 30% of the activity of the replicative plasmid. Using mutant T antigens unable to replicate viral DNA, late promoter activation occurred only with mutant T antigens that retain DNA binding activity. These results demonstrate that T antigen can substantially stimulate late promoter activity directly and independent of viral DNA replication.  相似文献   

4.
5.
6.
7.
8.
9.
Using three different polyomavirus hr-t mutants and two polyomavirus mlT mutants, we studied induction of S-phase by mutants and wild-type virus in quiescent mouse kidney cells, mouse 3T6 cells, and FR 3T3 cells. At different times after infection, we measured the proportion of T-antigen-positive cells, the incorporation of [3H]thymidine, the proportion of DNA-synthesizing cells, and the increase in total DNA, RNA, and protein content of the cultures. In permissive mouse cells, we also determined the amount of viral DNA and the proportion of viral capsid-producing cells. In polyomavirus hr-t mutant-infected cultures, onset of host DNA replication was delayed by several hours, and a smaller proportion of T-antigen-positive cells entered S-phase than in wild-type-infected cultures. Of the two polyomavirus mlT mutants studied, dl-23 behaved similarly to wild-type virus in many, but not all, parameters tested. The poorly replicating but well-transforming mutant dl-8 was able to induce S-phase, and (in permissive cells) progeny virus production, in only about one-third of the T-antigen-positive cells. From our experiments, we conclude that mutations affecting small and middle T-antigen cause a reduction in the proportion of cells responding to virus infection and a prolongation of the early phase, i.e., the period before cells enter S-phase. In hr-t mutant-infected mouse 3T6 cells, production of viral DNA was less than 10% of that in wild-type-infected cultures; low hr-t progeny production in 3T6 cells was therefore largely due to poor viral DNA replication.  相似文献   

10.
J Y Zhu  C N Cole 《Journal of virology》1989,63(11):4777-4786
Linker insertion mutants affecting the simian virus 40 (SV40) large tumor (T) antigen were constructed by inserting a 12-base-pair oligonucleotide linker into restriction endonuclease cleavage sites located within the early region of SV40. One mutant, with the insertion at amino acid 5, was viable in CV-1p and BSC-1 cells, indicating that sequences very close to the amino terminus of large T could be altered without affecting the lytic infection cycle of SV40. All other mutants affecting large T were not viable. In complementation assays between the linker insertion mutants and either a late-gene mutant, dlBC865, or a host range/helper function (hr/hf) mutant, dlA2475, delayed complementation was seen with the 6 of the 10 nonviable mutants. Of these 10 mutants, 5 formed plaques 3 to 4 days later than in control complementations, while complementation by one of the mutants, inA2827, with an insertion at amino acid 520, was delayed more than 1 week. Most mutants which showed delayed complementation replicated less well in Cos-1 cells than did a control mutant, dlA1209, which produced no T antigen. The replication of inA2827(aa520) was reduced by more than 90%. Similar interference with viral DNA replication was seen when CV-1, HeLa, or 293 cells were cotransfected with an origin-defective plasmid encoding wild-type large T antigen and with inA2827(aa520). Only one of the mutant T antigens, inA2807(aa303), was unstable. These results indicate that some of the mutant T antigens interfered with functions of wild-type T required for viral DNA replication. However, not all of the mutants which showed delayed complementation also showed interference with viral DNA replication. This indicates that mutant large T antigens may interfere trans dominantly with multiple activities of wild-type large T antigen.  相似文献   

11.
12.
13.
14.
15.
To better understand the regulation of late gene expression in human cytomegalovirus (CMV)-infected cells, we examined expression of the gene that codes for the 65-kilodalton lower-matrix phosphoprotein (pp65). Analysis of RNA isolated at 72 h from cells infected with CMV Towne or ts66, a DNA-negative temperature-sensitive mutant, supported the fact that pp65 is expressed at low levels prior to viral DNA replication but maximally expressed after the initiation of viral DNA replication. To investigate promoter activation in a transient expression assay, the pp65 promoter was cloned into the indicator plasmid containing the gene for chloramphenicol acetyltransferase (CAT). Transfection of the promoter-CAT construct and subsequent superinfection with CMV resulted in activation of the promoter at early times after infection. Cotransfection with plasmids capable of expressing immediate-early (IE) proteins demonstrated that the promoter was activated by IE proteins and that both IE regions 1 and 2 were necessary. Analysis of promoter deletion mutants indicated that the 5' minimal sequence required for activation is -61 from the CAP site (+1) and that an 8-base-pair sequence located at -51 to -58 is necessary for activation of the pp65 promoter. This sequence is repeated once at +93 and is found as an inverted repeat at +67. These studies suggest that interactions between IE proteins and this octamer sequence may be important for the regulation and expression of this CMV gene.  相似文献   

16.
17.
The late promoter of simian virus 40 (SV40) is activated in trans by the viral early gene product, T antigen. We inserted the wild-type late-promoter region, and deletion mutants of it, into chloramphenicol acetyltransferase transient expression vectors to identify promoter sequences which are active in the presence of T antigen. We defined two promoter activities. One activity was mediated by a promoter element within simian virus 40 nucleotides 200 to 270. The activity of this element was detectable only in the presence of an intact, functioning origin of replication and accounted for 25 to 35% of the wild-type late-promoter activity in the presence of T antigen. The other activity was mediated by an element located within a 33-base-pair sequence (simian virus nucleotides 168 to 200) which spans the junction of the 72-base-pair repeats. This element functioned in the absence of both the origin of replication and the T-antigen-binding sites and appeared to be responsible for trans-activated gene expression. When inserted into an essentially promoterless plasmid, the 33-base-pair element functioned in an orientation-dependent manner. Under wild-type conditions in the presence of T antigen, the activity of this element accounted for 65 to 75% of the late-promoter activity. The roles of the 33-base-pair element and T antigen in trans-activation are discussed.  相似文献   

18.
Transfection of 3T6 cells with a cloned polyomavirus genome encoding only large T antigen resulted in DNA replication with only about 1/10 the efficiency of wild-type viral DNA coding for all three T antigens. This replication defect was at least in part overcome by the simultaneous transfections of polyomavirus genomes which allowed the expression of small T antigen. We conclude that polyomavirus small T antigen has a (probably indirect) role in replication.  相似文献   

19.
We describe a new complementation function within the simian virus 40 (SV40) A gene. This function is required for viral DNA replication and virus production in vivo but, surprisingly, does not affect any of the intrinsic enzymatic functions of T antigen directly required for in vitro DNA replication. Other well-characterized SV40 T-antigen mutants, whether expressed stably from integrated genomes or in cotransfection experiments, complement these mutants for in vivo DNA replication and plaque formation. These new SV40 mutants were isolated and cloned from human cells which stably carry the viral DNA. The alteration in the large-T-antigen gene was shown by marker rescue and nucleotide sequence analysis to be a deletion of 322 bp spanning the splice-donor site of the first exon, creating a 14-amino-acid deletion in the large T antigen. The mutant gene was expressed in H293 human cells from an adenovirus vector, and the protein was purified by immunoaffinity chromatography. The mutant protein directs greater levels of DNA replication in vitro than does the wild-type protein. Moreover, the mutant protein reduces the lag time for in vitro DNA synthesis and can be diluted to lower levels than wild-type T antigen and still promote good replication, which is in clear contrast to the in vivo situation. These biochemical features of the protein are independent of the source of the cellular replication factors (i.e., HeLa, H293, COS 7, or CV1 cells) and the cells from which the T antigens were purified. The mutant T antigen does not transform Rat-2 cells. Several different models which might reconcile the differences observed in vivo and in vitro are outlined. We propose that the function of T antigen affected prepares cells for SV40 replication by activation of a limiting cellular replication factor. Furthermore, a link between the induction of a cellular replication factor and transformation by SV40 is discussed.  相似文献   

20.
C Gelinas  S Masse    M Bastin 《Journal of virology》1984,51(1):242-246
The DNA from polyomavirus mlt mutant P155 transforms cells in culture as efficiently as wild-type DNA but has a much lower tumorigenic potential when injected into newborn rodents. The mutant has a 12-base-pair deletion between nucleotides 1347 and 1360, i.e., in a region which encodes parts of the middle and large T antigens (G elinas et al., J. Virol. 43:1072-1081, 1982). To determine which of the two viral gene functions was affected by the mutation, we transferred the latter into a modified polyomavirus genome encoding exclusively the middle T protein. Our results show that the P155 mutation alters a function of the polyomavirus middle T protein required for the induction of the tumorigenic process in vivo. Beside the 12-base-pair deletion at 96.3 map units, there is no other alteration in the coding sequence of P155 middle T with respect to that of P16, the wild-type parental strain. We conclude, therefore, that the deletion is the lesion affecting the tumorigenic potential of mutant P155 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号