首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Thrombin induces platelet activation through a variety of intracellular mechanisms, including Ca(2+) mobilization. The protein of the exocytotic machinery SNAP-25, but not VAMPs, is required for store-operated Ca(2+) entry, the main mechanism for Ca(2+) influx in platelets. Hence, we have investigated the role of the SNAP-25 and VAMPs in thrombin-induced platelet aggregation. Platelet stimulation with thrombin or selective activation of thrombin receptors PAR-1, PAR-4 or GPIb-IX-V results in platelet aggregation that, except for GPIb-IX-V receptor, requires Ca(2+) entry for full activation. Depletion of the intracellular Ca(2+) stores using pharmacological tools was unable to induce aggregation except when cytosolic Ca(2+) concentration reached a critical level (around 1.5 microM). Electrotransjection of cells with anti-SNAP-25 antibody reduced thrombin-evoked platelet aggregation, while electrotransjection of anti-VAMP-1, -2 and -3 antibody had no effect. These findings support a role for SNAP-25 but not VAMP-1, -2 and -3 in platelet aggregation, which is likely mediated by the regulation of Ca(2+) mobilization in human platelets.  相似文献   

2.
The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G-protein coupled receptor agonist sphingosine-1-phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist-evoked or store-dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels.  相似文献   

3.
The relationship between agonist-sensitive calcium compartments and those discharged by the Ca(2+)-ATPase inhibitor thapsigargin were studied in human platelets. In this context, calcium mobilization from intracellular pools and manganese influx was investigated in relation to the effect of altered cyclic-nucleotide levels. For maximal calcium release from intracellular stores, thapsigargin, compared to a receptor agonist like thrombin, requires the platelet's self-amplification mechanism, known to generate thromboxane A2. With this lipid mediator formed, thapsigargin released calcium and stimulated manganese influx in a manner similar to thrombin. Blocking the thromboxane receptor by addition of sulotroban (BM13.177) or, alternatively, increasing platelet cAMP or cGMP using prostacyclin or sodium nitroprusside, dramatically reduced the ability of thapsigargin to release calcium from intracellular compartments. The same experimental conditions significantly reduced the rate of manganese influx initiated by thapsigargin compared to thrombin. The experiments indicate that thapsigargin-sensitive compartments play only a minor role in inducing manganese influx compared to the receptor-sensitive compartment. Cyclic nucleotides accelerate the redistribution of an agonist-elevated platelet calcium into the thapsigargin-sensitive compartment, from which calcium can be released by inhibition of the Ca(2+)-ATPase. In human platelets, thapsigargin-induced calcium increase and influx were responsible for only part the calcium release resulting from inhibition of the corresponding ATPase; another part results from the indirect effect of thapsigargin acting via thromboxane-A2-receptor activation. Cyclic nucleotides are therefore an interesting regulatory device which can modify the thapsigargin response by not allowing the self-amplification mechanism of platelets to operate.  相似文献   

4.
In many cell types agonist-receptor activation leads to a rapid and transient release of Ca(2+) from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP(3)) receptors (InsP(3)Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intracellular calcium stores. Calcium entry must be finely regulated in order to prevent an excessive intracellular calcium increase. Junctate, an integral calcium binding protein of endo(sarco)plasmic reticulum membrane, (a) induces and/or stabilizes peripheral couplings between the ER and the plasma membrane, and (b) forms a supramolecular complex with the InsP(3)R and the canonical transient receptor potential protein (TRPC) 3 calcium entry channel. The full-length protein modulates both agonist-induced and store depletion-induced calcium entry, whereas its NH(2) terminus affects receptor-activated calcium entry. RNA interference to deplete cells of endogenous junctate, knocked down both agonist-activated calcium release from intracellular stores and calcium entry via TRPC3. These results demonstrate that junctate is a new protein involved in calcium homeostasis in eukaryotic cells.  相似文献   

5.
Ca(2+) release from internal stores as a result of activation of phospholipase C or inhibition of the endoplasmic reticulum pump is accompanied by Ca(2+) influx from the extracellular space. Measurement of intracellular calcium concentration and fluorescence quenching in Fura2-loaded cells showed that platelets preincubated in lithium have significantly higher basal, but lower agonist-stimulated influx of Mn(2+) (acting as a surrogate of Ca(2+) influx), than platelets reloaded with calcium in a normal sodium medium. There is no difference in the basal entry of divalent ion in platelets preincubated in sodium, lithium, or N-methyl glucamine in the absence of calcium. In platelets preincubated in lithium there is a higher basal Mn(2+) entry without further increase upon store depletion by thapsigargin. In contrast, a significant increase in the divalent ion influx was found in sodium or N-methyl glucamine attributable to the opening of channels sensitive to store depletion. In the absence of extracellular calcium, the empty store opens channels and Li(+) did not have additional effect on channels that are already open. The refilling of the stores with Ca(2+) suppresses Mn(2+) entry after sodium or NMG preincubation, but not after lithium preincubation. We propose that lithium induces a calcium influx throughout store-operated channels. This hypothesis may explain the lack of additivity, in cell preincubated in lithium, of basal entry and thapsigargin-triggered entry of calcium.  相似文献   

6.
Plein H  Berk M  Eppel S  Butkow N 《Life sciences》2000,66(5):425-431
There is an augmented platelet intracellular calcium response to serotonin stimulation in major depression. The role that calcium influx has in this process is not known. The objective of this study was to determine platelet calcium influx in response to serotonin by two methods, Mn2+ influx and 45Ca2+ uptake, in order to observe if the uptake response to serotonin was augmented in major depression by comparing the response to normal controls. The use of the two methods of calcium influx showed that serotonin stimulates calcium uptake into platelets. Furthermore, patients with major depression have significantly augmented platelet calcium uptake in response to serotonin. The interesting finding was that calcium uptake into platelets is biphasic, occurring immediately and after five minutes. These results may support the two pool model for calcium oscillations within cells whereby extracellular calcium is needed for intracellular calcium release, and for replenishment of depleted stores once intracellular calcium is released.  相似文献   

7.
We have investigated the calcium signaling relationship between the two major platelet adhesion receptors, glycoprotein Ib/V/IX (GPIb/V/IX) and integrin alpha(IIb)beta(3), involved in regulating platelet adhesion on von Willebrand factor (vWf) under flow. Our studies demonstrate that GPIb engagement of immobilized vWf elicits a transient calcium spike that may function to promote reversible arrest of translocating platelets. Subsequent integrin alpha(IIb)beta(3) engagement of vWf promotes sustained calcium oscillations that are essential for the maintenance of irreversible adhesion. GPIb-induced calcium spikes appear distinct from those initiated by integrin alpha(IIb)beta(3), in that the former are exclusively mediated through release of intracellular calcium stores via a signaling mechanism independent of PI 3-kinase. In contrast, integrin alpha(IIb)beta(3)-dependent calcium flux involves a PI 3-kinase-dependent signaling mechanism linked to intracellular calcium mobilization and subsequent transmembrane calcium influx. Studies employing the caged calcium chelator (o-nitrophenyl-EGTA) demonstrate that transient calcium spikes initiate a transient phase of platelet arrest that is converted to irreversible adhesion with the development of sustained oscillatory calcium flux. These studies demonstrate the existence of a dual step calcium signaling mechanism utilized by GPIb and integrin alpha(IIb)beta(3) that serves to regulate the dynamics of platelet adhesion under flow.  相似文献   

8.
While changes in intracellular calcium levels is a central step in platelet activation and thrombus formation, the contribution and mechanism of receptor-operated calcium entry (ROCE) via transient receptor potential channels (TRPCs) in platelets remains poorly defined. In previous studies, we have shown that TRPC6 regulates hemostasis and thrombosis, in mice. In the present studies, we employed a knockout mouse model system to characterize the role of TRPC6 in ROCE and platelet activation. It was observed that the TRPC6 deletion (Trpc6?/?) platelets displayed impaired elevation of intracellular calcium, i.e., defective ROCE. Moreover, these platelets also exhibited defects in a host of functional responses, namely aggregation, granule secretion, and integrin αIIbβ3. Interestingly, the aforementioned defects were specific to the thromboxane receptor (TPR), as no impaired responses were observed in response to ADP or the thrombin receptor-activating peptide 4 (TRAP4). The defect in ROCE in the Trpc6?/? was also observed with 1-oleoyl-2-acetyl-sn-glycerol (OAG). Finally, our studies also revealed that TRPC6 regulates clot retraction. Taken together, our findings demonstrate that TRPC6 directly regulates TPR-dependent ROCE and platelet function. Thus, TRPC6 may serve as a novel target for the therapeutic management of thrombotic diseases.  相似文献   

9.
Agonists elevate the cytosolic calcium concentration in human platelets via a receptor-operated mechanism, involving both Ca(2+) release from intracellular stores and subsequent Ca(2+) entry, which can be inhibited by platelet inhibitors, such as prostaglandin E(1) and nitroprusside which elevate cAMP and cGMP, respectively. In the present study we investigated the mechanisms by which cAMP and cGMP modulate store-mediated Ca(2+) entry. Both prostaglandin E(1) and sodium nitroprusside inhibited thapsigargin-evoked store-mediated Ca(2+) entry and actin polymerization. However, addition of these agents after induction of store-mediated Ca(2+) entry did not affect either Ca(2+) entry or actin polymerization. Furthermore, prostaglandin E(1) and sodium nitroprusside dramatically inhibited the tyrosine phosphorylation induced by depletion of the internal Ca(2+) stores or agonist stimulation without affecting the activation of Ras or the Ras-activated phosphatidylinositol 3-kinase or extracellular signal-related kinase (ERK) pathways. Inhibition of cyclic nucleotide-dependent protein kinases prevented inhibition of agonist-evoked Ca(2+) release but it did not have any effect on the inhibition of Ca(2+) entry or actin polymerization. Phenylarsine oxide and vanadate, inhibitors of protein-tyrosine phosphatases prevented the inhibitory effects of the cGMP and cAMP elevating agents on Ca(2+) entry and actin polymerization. These results suggest that Ca(2+) entry in human platelets is directly down-regulated by cGMP and cAMP by a mechanism involving the inhibition of cytoskeletal reorganization via the activation of protein tyrosine phosphatases.  相似文献   

10.
The events involved in platelet shape change, aggregation, the release reaction and contraction are thought to be mediated by the availability of Ca2+. Increased cytoplasmic calcium, released from intracellular stores, triggers platelet activity, and increased concentration of adenosine 3',5'-cyclic monophosphate (cyclic AMP) inhibits platelet alterations. We have studied the hypothesis that cyclic AMP may regulate the level of platelet cytoplasmic calcium by stimulating calcium removal by a membrane system. Such a hypothesis would be consistent with the reversibility of most manifestations of platelet activation. Human platelets were sonicated and unlysed platelets, mitochondria and granules were removed by centrifugation at 19 000 X g. Electron microscopy shows that the sediment, after centrifugation of the supernatant at 40 000 X g consists to a large extent of membrane vesicles. Such preparations actively concentrate calcium, as measured by the uptake of 45Ca, and also have the maximal calcium-stimulated ATPase activity. Optimal calcium uptake requires ATP and oxalate, and release of calcium from loaded vesicles was stimulated by the calcium ionophore A23187 and inhibited by LaCl3. These data indicate that calcium was being actively concentrated within membrane vesicles. After washing of such preparations in the absence of ATP, their capacity to take up Ca2+ is reduced to an initial value of 2.8 nmol/mg protein per min. In the presence of 2 - 10(6) M cyclic AMP to which was added a protein kinase preparation from human platelets, up to a 3-fold increase of this rate of uptake was observed. These results suggest that in platelets, as in muscle, cyclic AMP is a regulatory factor in the control of cytoplasmic calcium. Although the cyclic nucleotide may have still other functions, it appears likely that the well-known inhibition of many platelet activities by high intracellular cyclic AMP concentrations is directly linked to the stimulation of the removal of Ca2+ from the cytoplasm.  相似文献   

11.
Physical interaction between transient receptor potential (Trp) channels and inositol 1,4,5-trisphosphate receptors (IP(3)Rs) has been presented as a candidate mechanism for the activation of store-mediated Ca(2+) entry. The role of a human homologue of Drosophila transient receptor potential channel, hTrp1, in the conduction of store-mediated Ca(2+) entry was examined in human platelets. Incubation of platelets with a specific antibody, which recognizes the extracellular amino acid sequence 557-571 of hTrp1, inhibited both store depletion-induced Ca(2+) and Mn(2+) entry in a concentration-dependent manner. Stimulation of platelets with the physiological agonist thrombin activated coupling between the IP(3) receptor type II and endogenously expressed hTrp1. This event was reversed by refilling of the internal Ca(2+) stores but maintained after removal of the agonist if the stores were not allowed to refill. Inhibition of IP(3) recycling using Li(+) or inhibition of IP(3)Rs with xestospongin C or treatment with jasplakinolide, to stabilize the cortical actin filament network, abolished thrombin-induced coupling between hTrp1 and IP(3)R type II. Incubation with the anti-hTrp1 antibody inhibited thrombin-evoked Ca(2+) entry without affecting Ca(2+) release from intracellular stores. These results provide evidence for the involvement of hTrp1 in the activation of store-mediated Ca(2+) entry by coupling to IP(3)R type II in normal human cells.  相似文献   

12.
In human platelets thrombin-induced calcium release from intracellular stores, the consequent influx of extracellular calcium, as well as their role in the aggregation and ATP-secretion reactions were examined. In indo-1-loaded platelets intracellular calcium release was studied in the presence of excess EGTA in the incubation medium, while calcium influx was followed after a rapid repletion of external calcium. After thrombin-stimulation both calcium release and calcium influx produced about the same peak levels of cytoplasmic free calcium but in the first case it was only a transient response, while in the latter one a sustained calcium signal was observed. Increased calcium influx could be evoked for several minutes after the addition of thrombin, it was selectively inhibited by Mg2+ (20 mM) and Ni2+ (1 mM) ions, by neomycin and by PCMB, a non-penetrating SH-group reagent. This calcium influx was practically insensitive to organic calcium channel blockers. Thrombin-induced platelet aggregation was only partial in the absence of external calcium, even if excess magnesium was present in the media, while the aggregation response became complete if external calcium was repleted. A significantly reduced aggregation could be seen in calcium-containing media if calcium influx was selectively inhibited. Platelet ATP-secretion under the same conditions did not depend on external calcium or on calcium influx. These data indicate that in thrombin-stimulated platelets the opening of specific plasma membrane calcium channels can be selectively modulated and these channels play a major role in the development of a full-scale aggregation.  相似文献   

13.
Cross-linking platelet GPIb with the snake C-type lectin echicetin provides a specific technique for activation via this receptor. This allows GPIb-dependent mechanisms to be studied without the necessity for shear stress-induced binding of von Willebrand factor or primary alpha(IIb)beta(3) involvement. We already showed that platelets are activated, including tyrosine phosphorylation, by echicetin-IgMkappa-induced GPIb cross-linking. We now investigate the mechanism further and demonstrate that platelets, without modulator reagents, spread directly on an echicetin-coated surface, by a GPIb-specific mechanism, causing exocytosis of alpha-granule markers (P-selectin) and activation of alpha(IIb)beta(3). This spreading requires actin polymerization and release of internal calcium stores but is not dependent on external calcium nor on src family tyrosine kinases. Cross-linking of GPIb complex molecules on platelets, either in suspension or via specific surface attachment, is sufficient to induce platelet activation.  相似文献   

14.
We have previously reported that a component of ADP-evoked Ca2+ entry in human platelets appears to be promoted following the release of Ca2+ from intracellular stores. Other agonists may employ a similar mechanism. Here we have further investigated the relationship between the state of filling of the Ca2+ stores and plasma membrane Ca2+ permeability in Fura-2-loaded human platelets. Ca2+ influx was promoted following store depletion by inhibitors of the endoplasmic reticulum Ca(2+)-ATPase, thapsigargin (TG) and 2,5-di-(t-butyl)-1,4-benzohydroquinone (tBuBHQ). Divalent cation entry was confirmed by quenching of Fura-2 fluorescence with externally added Mn2+. It has been suggested that cytochrome P-450 may couple Ca2+ store depletion to an increased plasma membrane Ca2+ permeability. In apparent agreement with this, Mn2+ influx promoted by TG and tBuBHQ, or by preincubation of cells in Ca(2+)-free medium, was inhibited by the imidazole antimycotics, econazole and miconazole, which inhibit cytochrome P-450 activity. Agonist-evoked Mn2+ influx was only partially inhibited by these compounds at the same concentration (3 microM). Econazole (3 microM) reduced the Mn2+ quench evoked by ADP by 38% of the control value and that evoked by vasopressin, platelet activating factor (PAF) and thrombin no more than 15% of control, 20 s after agonist addition. Stopped-flow fluorimetry indicated that econazole had no detectable effect on the early time course of agonist-evoked Mn2+ entry or rises in [Ca2+]i. These data confirm the existence of a Ca2+ entry pathway in human platelets which is activated by depletion of the intracellular Ca2+ stores. Further, the results support the suggestion that cytochrome P-450 may participate in such a pathway. However, any physiological role for the cytochrome or its products in agonist-evoked events appears to be in the long-term maintenance or restoration of store Ca2+ content, rather than in promoting Ca2+ influx in the initial stages of platelet Ca2+ signal generation.  相似文献   

15.
Store-operated Ca2+ entry (SOCE), a major mechanism for Ca2+ entry in non-excitable cells, is regulated by the filling state of the intracellular Ca2+ stores. We have previously reported that a de novo conformational coupling between the type II IP3 receptor (IP3RII) and hTRPC1 channel occurs after depletion of the intracellular Ca2+ stores in human platelets, which might be involved in the activation of SOCE in these cells. Here we present for the first time direct evidence for the functional relevance of the coupling between hTRPC1 and IP3RII in SOCE in human platelets. Our data suggest that at least two pathways may contribute to SOCE in these cells. An early component, insensitive to cytochalasin D (Cyt D), is followed by a late component which is sensitive to Cyt D. Introduction of a peptide corresponding to IP3RII(317-334) (IP3BD-peptide(317-334)) in the cells by electrotransjection impairs the coupling between hTRPC1 and IP3RII but not the interaction between hTRPC1 and STIM1 induced by store depletion. Coimmunoprecipitation experiments indicated that endogenously expressed hTRPC1 interacts with the IP3BD-peptide(317-334). Electrotransjection of cells with IP3BD-peptide(317-334), significantly attenuated the late stage of Ca2+ and Mn2+ entry induced by 10 nM thapsigargin (TG) or 20 microM 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ), providing evidence for a functional role of the de novo coupling between hTRPC1 and IP3RII in the activation of SOCE in human platelets.  相似文献   

16.
Previously, we demonstrated that through binding a novel intracellular receptor of microM affinity (HIC), histamine mediates, and the HIC antagonist N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine. HCl (DPPE) inhibits, platelet aggregation and serotonin granule secretion; the latter response is dependent upon the same processes that mediate histamine release from mast cell granules. We now show that, as for platelet serotonin release, DPPE blocks concanavalin A-stimulated mast cell histamine release with a potency (IC50 = 30 microM) greater than the H1-antagonist, pyrilamine (IC50 = 150 microM) or the H2-antagonist cimetidine (IC50 = 5 mM), correlating with rank order of potency to inhibit 3H-histamine binding in rat brain membranes and liver microsomes. We postulate that histamine release from mast cells is mediated at HIC by second messenger intracellular histamine. However, unlike platelets, mast cells do not appear to rely on newly synthesized histamine. Rather, as for calcium, histamine may be mobilized from bound stores to mediate histamine secretion.  相似文献   

17.
细胞内钙库排空产生一种信号,诱导细胞膜上的钙库操纵的钙通道(SOC)开放,使Ca^2 由细胞外进入细胞内,称为容量性钙内流(CCE),或钙释放激活的钙通道(CRAC),可能由果蝇一过性受体电位(trp)和trp样(trpl)基因编码,钙库排空和通道开放之间的偶联机制不清,目前主要提出三种机制:(1)弥散信使;(2)蛋白质-蛋白质之间的相互作用;(3)囊泡分泌。本文综述了CCE的分子代表 ,可能机制及电生理表型。  相似文献   

18.
The relationship between thrombin-evoked changes in intracellular calcium concentration [( Ca2+]i) and aggregation was examined in Indo-1-loaded human platelets. The stimulus-induced intracellular calcium release and external calcium influx, as well as platelet aggregation, were studied in the same cell preparation. A close correlation between the sustained high [Ca2+]i level, depending on calcium entry, and the aggregation response was found. Gramicidin, at a concentration high enough to induce membrane depolarization, strongly inhibited the calcium influx and aggregation, but did not influence the thrombin-induced intracellular calcium release. We conclude that calcium influx through depolarization-inhibited calcium channels is a prerequisite of thrombin-induced platelet aggregation.  相似文献   

19.
The purpose of this study was to explore the effect of oleic acid (OA) on intracellular Ca2+ mobilization in human platelets. When applied extracellularly, OA produced a concentration dependent rise in cytosolic [Ca2+] [Ca2+]cyt) when extracellular [Ca2+] ([Ca2+]ext was zero (presence of EGTA), suggesting that OA caused an intracellular release of Ca2+. Intracellular Ca2+ release was directly proportional to entry of OA into platelets and OA entry was indirectly proportional to [Ca2+]ext. In permeabilized platelets, OA caused the release of 45Ca2+ from ATP dependent intracellular stores. Finally, our results show that thrombin stimulated the release of [3H]OA from platelet phospholipids. The saturated fatty acids stearic and palmitic acid did not stimulate an increase in [Ca2+]cyt under these conditions, but the unsaturated fatty acid, linolenic acid produced effects similar to those of OA, suggesting specificity among fatty acids for effects on [Ca2+]cyt. Taken together, our experiments suggest that OA which has been incorporated into platelet phospholipids was released intothe cytosol by thrombinstimulation. Our experiments also show that OA stimulates Ca2+ release from intracellular stores. These results support the hypothesis that OA may serve as an intracellular messenger in human platelets.  相似文献   

20.
The effects of U46619, a thromboxane mimic, on cytosolic Ca2+ concentration and platelet aggregation were determined in human platelets. Cytosolic Ca2+ concentration was determined by Quin-2 fluorescence and platelet aggregation quantitated with an aggregometer. Addition of U46619 (1 x 10(-7) M) to the platelet suspension produced a rapid increase in cytosolic Ca2+ and platelet aggregation. Pretreatment of platelets with EGTA (3 x 10(-3) M), verapamil (5 x 10(-4) M), a calcium entry blocker, or 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride (1 x 10(-3) M), an inhibitor of intracellular Ca2+ release, either blunted or markedly delayed the rate, but not the magnitude, of increase in cytosolic Ca2+ and prevented platelet aggregation by U46619. Pretreatment of platelets with prostaglandin I2 (PGI2) (5 x 10(-8) M), PGD2 (5 x 10(-8) M), PGE1 (5 x 10(-8) M), PGF2 alpha (1 x 10(-5) M), dibutyryl cAMP (5 x 10(-3) M), or forskolin (1 x 10(-6) M) prevented both the increase in cytosolic Ca2+ and the associated platelet aggregation induced by U46619. These data suggest that U46619 may induce platelet aggregation through an increase in cytosolic Ca2+, and that both Ca2+ entry and its release from intracellular storage sites probably contribute to the increase in cytosolic Ca2+. Furthermore, the rate of the increase in cytosolic Ca2+ concentration, as well as the magnitude of the increase, appear to be critical for platelet aggregation induced by U46619. Our data are consistent with the hypothesis that PGs inhibit U46619-induced platelet aggregation by preventing the increase in cytosolic Ca2+, and that these effects may be mediated via an increase in cAMP, since they were induced by PGs and cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号