首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The ability of several electron acceptors to promote the Gluconobacter oxydans catalyzed oxidation of glycerol was investigated. p-Benzoquinone was the most effective electron acceptor. The reaction rate obtained with p-benzoquinone was higher than the maximal rate with the natural electron acceptor, oxygen, in all the oxidation reactions tested.  相似文献   

2.
The rotenone-insensitive NADH:hexaammineruthenium III (HAR) oxidoreductase reactions catalyzed by bovine heart and Yarrowia lipolytica submitochondrial particles or purified bovine complex I are stimulated by ATP and other purine nucleotides. The soluble fraction of mammalian complex I (FP) and prokaryotic complex I homolog NDH-1 in Paracoccus denitrificans plasma membrane lack stimulation of their activities by ATP. The stimulation appears as a decrease in apparent K(m) values for NADH and HAR. Thus, the "accessory" subunits of eukaryotic complex I bear an allosteric ATP-binding site.  相似文献   

3.
4.
A mechanism is presented for the luciferase catalyzed oxidation of reduced flavin mononucleotide with oxygen in the presence of long-chain aldehyde. The mechanism involves the formation of a flavin peroxy anion which attacks aldehyde. A Baeyer-Villiger type shift leads to oxidation of aldehyde to acid, and to formation of hydroxide and excited protonated flavin which emits a photon. The mechanism is consistent with known details of the bioluminescent reaction and with known reactions of flavins and allows several verifiable predictions to be made.  相似文献   

5.
6.
The kinetics of the NADH3'-acetylpyridine adenine dinucleotide (APAD+) transhydrogenase reaction (DD-reaction) catalyzed by different preparations of mitochondrial NADH-dehydrogenase (submitochondrial particles (SMP), purified Complex I, and three-subunit fragment of Complex I (FP)) have been studied. Complex I (in SMP or in purified preparation) catalyzes two NADHAPAD+ reactions with different rates and nucleotide affinities. Reaction 1 has high affinity to APAD+ (K m = 7 M, for SMP) and low rate (V m = 0.2 mol/min per mg protein, for SMP) and occurs with formation of a ternary complex. Reaction 2 has much higher rate and considerably lower affinity for oxidized nucleotide (V m = 1.7 mol/min per mg protein and K m = 160 M, for SMP). FP catalyzes only reaction 1. ADP-ribose inhibits reaction 1 with mixed type inhibition (competitive with non-competitive) with respect to NADH and APAD+. Rhein competes with both substrates. The results suggest that at least two nucleotide-binding sites exist in Complex I.  相似文献   

7.
8.
NADH:ubiquinone oxidoreductase (complex I) is a major source of reactive oxygen species in mitochondria and a contributor to cellular oxidative stress. In isolated complex I the reduced flavin is known to react with molecular oxygen to form predominantly superoxide, but studies using intact mitochondria contend that superoxide may result from a semiquinone species that responds to the proton-motive force (Δp) also. Here, we use bovine heart submitochondrial particles to show that a single mechanism describes superoxide production by complex I under all conditions (during both NADH oxidation and reverse electron transfer). NADH-induced superoxide production is inhibited by complex I flavin-site inhibitors but not by inhibitors of ubiquinone reduction, and it is independent of Δp. Reverse electron transfer (RET) through complex I in submitochondrial particles, driven by succinate oxidation and the Δp created by ATP hydrolysis, reduces the flavin, leading to NAD(+) and O(2) reduction. RET-induced superoxide production is inhibited by both flavin-site and ubiquinone-reduction inhibitors. The potential dependence of NADH-induced superoxide production (set by the NAD(+) potential) matches that of RET-induced superoxide production (set by the succinate potential and Δp), and they both match the potential dependence of the flavin. Therefore, both NADH- and RET-induced superoxide are produced by the flavin, according to the same molecular mechanism. The unified mechanism describes how reactive oxygen species production by complex I responds to changes in cellular conditions. It establishes a route to understanding causative connections between the enzyme and its pathological effects and to developing rational strategies for addressing them.  相似文献   

9.
Arg and Lys residues are concentrated on the distal side of cytochrome P450nor (P450nor) to form a positively charged cluster facing from the outside to the inside of the distal heme pocket. We constructed mutant proteins in which the Arg and Lys residues were replaced with Glu, Gln, or Ala. The results showed that this cluster plays crucial roles in NADH interaction. We also showed that some anions such as bromide (Br(-)) perturbed the heme environment along with the reduction step in P450nor-catalyzed reactions, which was similar to the effects caused by the mutations. We determined by x-ray crystallography that a Br(-), termed an anion hole, occupies a key region neighboring heme, which is the terminus of the positively charged cluster and the terminus of the hydrogen bond network that acts as a proton delivery system. A comparison of the predicted mechanisms between the perturbations caused by Br(-) and the mutations suggested that Arg(174) and Arg(64) play a crucial role in binding NADH to the protein. These results indicated that the positively charged cluster is the unique structure of P450nor that responds to direct interaction with NADH.  相似文献   

10.
This study represents the first characterisation of the substrate-binding site of Bacillus licheniformis alpha-amylase (BLA). It describes the first subsite map, namely, number of subsites, apparent subsite energies and the dual product specificity of BLA. The product pattern and cleavage frequencies were determined by high-performance liquid chromatography, utilising a homologous series of chromophore-substituted maltooligosaccharides of degree of polymerisation 4-10 as model substrates. The binding region of BLA is composed of five glycone, three aglycone-binding sites and a 'barrier' subsite. Comparison of the binding energies of subsites, which were calculated with a computer program, shows that BLA has similarity to the closely related Bacillus amyloliquefaciens alpha-amylase.  相似文献   

11.
Stable supercomplexes of bacterial respiratory chain complexes III (ubiquinol:cytochrome c oxidoreductase) and IV (cytochrome c oxidase) have been isolated as early as 1985 (Berry, E. A., and Trumpower, B. L. (1985) J. Biol. Chem. 260, 2458-2467). However, these assemblies did not comprise complex I (NADH:ubiquinone oxidoreductase). Using the mild detergent digitonin for solubilization of Paracoccus denitrificans membranes we could isolate NADH oxidase, assembled from complexes I, III, and IV in a 1:4:4 stoichiometry. This is the first chromatographic isolation of a complete "respirasome." Inactivation of the gene for tightly bound cytochrome c552 did not prevent formation of this supercomplex, indicating that this electron carrier protein is not essential for structurally linking complexes III and IV. Complex I activity was also found in the membranes of mutant strains lacking complexes III or IV. However, no assembled complex I but only dissociated subunits were observed following the same protocols used for electrophoretic separation or chromatographic isolation of the supercomplex from the wild-type strain. This indicates that the P. denitrificans complex I is stabilized by assembly into the NADH oxidase supercomplex. In addition to substrate channeling, structural stabilization of a membrane protein complex thus appears as one of the major functions of respiratory chain supercomplexes.  相似文献   

12.
13.
In Wolinella succinogenes ATP synthesis and consequently bacterial growth can be driven by the reduction of either nitrate (E0=+0.42 V), nitrite (E0=+0.36 V), fumarate (E0=+0.03 V) or sulphur (E0=-0.27 V) with formate as the electron donor. Bacteria growing in the presence of nitrate and fumarate were found to reduce both acceptors simultaneously, while the reduction of both nitrate and fumarate is blocked during growth with sulphur. These observations were paralleled by the presence and absence of the corresponding bacterial reductase activities. Using a specific antiserum, fumarate reductase was shown to be present in bacteria grown with fumarate and nitrate, and to be nearly absent from bacteria grown in the presence of sulphur. The contents of polysulphide reductase, too, corresponded to the enzyme activities found in the bacteria. This suggests that the activities of anaerobic respiration are regulated at the biosynthetic level in W. succinogenes. Thus nitrate and fumarate reduction are repressed by the most electronegative acceptor of anacrobic respiration, sulphur. By contrast, in Escherichia coli a similar effect is exerted by the most electropositive acceptor, O2. W. succinogenes also differs from E. coli in that fumarate reductase is not repressed by nitrate.Abbreviations BV benzyl viologen - DMN 2,3-dimethyl-1,4-naphthoquinone - DMSO dimethylsulfoxide - TMAO trimethylamine-N-oxide  相似文献   

14.
The pH dependence of the kinetic parameters V, V/KNADH, and V/KH2O2 has been determined for the flavoenzyme NADH peroxidase. Both V/KNADH and V/KH2O2 decrease as groups exhibiting pK's of 9.2 and 9.9, respectively, are deprotonated. The V profile decreases by a factor of 5 as a group exhibiting a pK of 7.2 is deprotonated. Primary deuterium kinetic isotope effects on NADH oxidation are observed on V only, and the magnitude of DV is independent of H2O2 concentration at pH 7.5. DV/KNADH is pH independent and equal to 1.0 between pH 6 and pH 9.5, but DV is pH dependent, decreasing from a value of 7.2 at pH 5.5 to 1.9 at pH 9.5. The shape of the DV versus pH profile parallels that observed in the V profile and yields a similar pK of 6.6 for the group whose deprotonation decreases DV. Solvent kinetic isotope effects obtained with NADH or reduced nicotinamide hypoxanthine dinucleotide as the variable substrate are observed on V only, while equivalent solvent kinetic isotope effects on V and V/K are observed when H2O2 is used as the variable substrate. In all cases linear proton inventories are observed. Primary deuterium kinetic isotope effects on V for NADH oxidation decrease as the solvent isotopic composition is changed from H2O to D2O. These data are consistent with a change in the rate-limiting step from a step in the reductive half-reaction at low pH to a step in the oxidative half-reaction at high pH. Analysis of the multiple kinetic isotope effect data suggests that at high D2O concentrations the rate of a single proton transfer step in the oxidative half-reaction is slowed. These data are used to propose a chemical mechanism involving the pH-dependent protonation of a flavin hydroxide anion, following flavin peroxide bond cleavage.  相似文献   

15.
Complex I (NADH:ubiquinone oxidoreductase) is crucial to respiration in many aerobic organisms. The hydrophilic domain of complex I, containing nine or more redox cofactors, and comprising seven conserved core subunits, protrudes into the mitochondrial matrix or bacterial cytoplasm. The α-helical membrane-bound hydrophobic domain contains a further seven core subunits that are mitochondrial-encoded in eukaryotes and named the ND subunits (ND1-ND6 and ND4L). Complex I couples the oxidation of NADH in the hydrophilic domain to ubiquinone reduction and proton translocation in the hydrophobic domain. Although the mechanisms of NADH oxidation and intramolecular electron transfer are increasingly well understood, the mechanisms of ubiquinone reduction and proton translocation remain only poorly defined. Recently, an α-helical model of the hydrophobic domain of bacterial complex I [Efremov, Baradaran and Sazanov (2010) Nature 465, 441-447] revealed how the 63 transmembrane helices of the seven core subunits are arranged, and thus laid a foundation for the interpretation of functional data and the formulation of mechanistic proposals. In the present paper, we aim to correlate information from sequence analyses, site-directed mutagenesis studies and mutations that have been linked to human diseases, with information from the recent structural model. Thus we aim to identify and discuss residues in the ND subunits of mammalian complex I which are important in catalysis and for maintaining the enzyme's structural and functional integrity.  相似文献   

16.
Microbial theophylline oxidase (ThOx) is a redox enzyme catalysing 8-hydroxylation of theophylline to form 1,3-dimethyluric acid. In this work, ThOx has been characterized as a fragile haem-containing protein complex composed of several non-covalently bound dynamic domains with molecular weights of around 60 and 210 kDa, and capable of formation of 1.5 MDa assemblies as well. The rate of theophylline oxidation by ThOx with the non-physiological electron acceptor ferricyanide was 0.17 s?1, approaching that with cytochrome c, 0.33 s?1. The apparent catalytic constant depended on the electron acceptor concentration. At concentrations lower than 0.2 mM the reaction did not fit the Michaelis–Menten scheme, and some non-catalytic processes dominated in the overall reaction. The kinetics of ThOx catalysis were also studied at electrodes modified with self-assembled monolayers (SAM) of hydroxyl- and amine-terminated alkanethiols. Different compositions of the SAM provide different orientations of ThOx on these layers. Depending on the orientation of ThOx onto the SAM-modified electrodes, the heterogeneous electron transfer (ET) constant, ks, which characterizes the ET reaction between the electrodes and the haem of ThOx (Eo/ of 87 mV (NHE)) was 0.4 s?1 and 3.2 s?1. Only the low-ET-rate orientation appeared to be productive for the electrocatalytic function of ThOx, giving a reaction similar to that with ferricyanide and cytochrome c. The apparent efficiency of ThOx bioelectrocatalysis in the absence of mediators was substantially lower than that mediated by ferricyanide or cytochrome c. This lower efficiency is consistent with a correspondingly lower amount of ThOx being in direct ET contact with the electrodes and thus involved in electrocatalysis.  相似文献   

17.
Metabolic diseases are characterized by high NADH/NAD+ ratios due to excessive electron supply, causing defective mitochondrial function and impaired sirtuin-3 (SIRT-3) activity, the latter driving to oxidative stress and altered fatty acid β-oxidation. NADH is oxidized by the complex I in the electron transport chain, thereby factors inhibiting complex I like acetylation, cardiolipin peroxidation, and glutathionylation by low GSH/GSSG ratios affects SIRT3 function by increasing the NADH/NAD+ ratio. In this review, we summarized the evidence supporting a role of the above events in the development of insulin resistance, which is relevant in the pathogenesis of obesity and diabetes. We propose that maintenance of proper NADH/NAD+ and GSH/GSSG ratios are central to ameliorate insulin resistance, as alterations in these redox couples lead to complex I dysfunction, disruption of SIRT-3 activity, ROS production and impaired β-oxidation, the latter two being key effectors of insulin resistance.  相似文献   

18.
Almost complete phospholipid depletion has been achieved for Complex I and III of the mitochondrial respiratory chain using a technique that involves elution on Sephadex LH-20 in the presence of Triton X-100. Enzymic activity may be regenerated by replenishment with phospholipid. However, restoration of enzymic activity in phospholipid-depleted Complex I and III has been shown to require the presence of cardiolipin. These results are, therefore, similar to findings on the absolute catalytic requirement of cardiolipin for cytochrome oxidase activity (Fry, M., and Green, D. E. (1980) Biochem. Biophys. Res. Commun. 93, 1238-1246). At least two roles for phospholipid involvement in electron transfer processes are proposed, a catalytic role provided specifically by cardiolipin and a dispersive role that may be provided by various phospholipids or detergents. The absolute requirement of enzymic activity for cardiolipin suggests that this phospholipid plays a crucial role in the coupled electron transfer process.  相似文献   

19.
20.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号