首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During development a tightly controlled signaling cascade dictates the differentiation, maturation and survival of developing neurons. Understanding this signaling mechanism is important for developing therapies for neurodegenerative illnesses. In previous work we have sought to understand the complex signaling pathways responsible for the development of midbrain dopamine neurons using a proteomic approach. One protein we have identified as being expressed in developing midbrain tissue is the vitamin D receptor. Therefore we investigated the effect of the biologically active vitamin D3 metabolite, calcitriol, on primary fetal ventral mesencephalic cultures of dopamine neurons. We observed a dose responsive increase in numbers of rat primary dopamine neurons when calcitriol was added to culture media. Western blot data showed that calcitriol upregulated the expression of glial derived neurotrophic factor (GDNF). Blocking GDNF signaling could prevent calcitriol’s ability to increase numbers of dopamine neurons. An apoptosis assay and cell birth dating experiment revealed that calcitriol increases the number of dopamine neurons through neuroprotection and not increased differentiation. This could have implications for future neuroprotective PD therapies.  相似文献   

2.
We recently suggested that alveolar interstitial fibroblast-to-myofibroblast transdifferentiation may be a key mechanism underlying in utero nicotine-induced lung injury. However, the effects of in utero nicotine exposure on fetal alveolar type II (ATII) cells have not been fully determined. Placebo, nicotine (1 mg/kg), or nicotine (1 mg/kg) + the peroxisome proliferator-activated receptor (PPAR)-gamma agonist prostaglandin J(2) (PGJ(2), 0.3 mg/kg) was administered intraperitoneally once daily to time-mated pregnant Sprague-Dawley rats from embryonic day 6 until their death on embryonic day 20. Fetal ATII cells were isolated, and ATII cell proliferation, differentiation (surfactant synthesis), and metabolism (metabolic profiling with the stable isotope [1,2-(13)C(2)]-d-glucose) were determined after nicotine exposure in utero or in vitro. In utero nicotine exposure significantly stimulated ATII cell proliferation, differentiation, and metabolism. Although the effects on ATII cell proliferation and metabolism were almost completely prevented by concomitant treatment with PGJ(2), the effects on surfactant synthesis were not. On the basis of in utero and in vitro data, we conclude that surfactant synthesis is stimulated by nicotine's direct effect on ATII cells, whereas cell proliferation and metabolism are affected via a paracrine mechanism(s) secondary to its effects on the adepithelial fibroblasts. These data provide evidence for direct and indirect effects of in utero nicotine exposure on fetal ATII cells that could permanently alter the "developmental program" of the developing lung. More importantly, concomitant administration of PPAR-gamma agonists can effectively attenuate many of the effects of in utero exposure to nicotine on ATII cells.  相似文献   

3.
Vitamin D status changes with season, but the effect of these changes on immune function is not clear. In this study, we show that in utero vitamin D deficiency in mice results in a significant reduction in invariant NKT (iNKT) cell numbers that could not be corrected by later intervention with vitamin D or 1,25-dihydroxy vitamin D(3) (active form of the vitamin). Furthermore, this was intrinsic to hematopoietic cells, as vitamin D-deficient bone marrow is specifically defective in generating iNKT cells in wild-type recipients. This vitamin D deficiency-induced reduction in iNKT cells is due to increased apoptosis of early iNKT cell precursors in the thymus. Whereas both the vitamin D receptor and vitamin D regulate iNKT cells, the vitamin D receptor is required for both iNKT cell function and number, and vitamin D (the ligand) only controls the number of iNKT cells. Given the importance of proper iNKT cell function in health and disease, this prenatal requirement for vitamin D suggests that in humans, the amount of vitamin D available in the environment during prenatal development may dictate the number of iNKT cells and potential risk of autoimmunity.  相似文献   

4.
Epidemiology has highlighted the links between season of birth, latitude and the prevalence of brain disorders such as multiple sclerosis and schizophrenia. In line with these data, we have hypothesized that ‘imprinting’ with low prenatal vitamin D could contribute to the risk of these two brain disorders. Previously, we have shown that transient developmental hypovitaminosis D induces permanent changes in adult nervous system. The aim of this study was to examine the impact of prenatal hypovitaminosis D on gene expression in the adult rat brain. Vitamin D deficient female rats were mated with undeprived males and the offspring were fed with a control diet after birth. At Week 10, gene expression in the progeny's brain was compared with control animals using Affymetrix gene microarrays. Prenatal hypovitaminosis D causes a dramatic dysregulation of several biological pathways including oxidative phosphorylation, redox balance, cytoskeleton maintenance, calcium homeostasis, chaperoning, post-translational modifications, synaptic plasticity and neurotransmission. A computational analysis of these data suggests that impaired synaptic network may be a consequence of mitochondrial dysfunction. Since disruptions of mitochondrial metabolism have been associated with both multiple sclerosis and schizophrenia, developmental vitamin D deficiency may be a heuristic animal model for the study of these two brain diseases.  相似文献   

5.
Vitamin D3 induces autophagy of human myeloid leukemia cells   总被引:1,自引:0,他引:1  
Vitamin D3 causes potent suppression of various cancer cells; however, significant supraphysiological concentrations of this compound are required for antineoplastic effects. Current combinatorial therapies with vitamin D3 are restricted to differentiation effects. It remains uncertain if autophagy is involved in vitamin D3 inhibition on leukemia cells. Here we show that besides triggering differentiation and inhibiting apoptosis, which was previously known, vitamin D3 triggers autophagic death in human myeloid leukemia cells. Inhibiting differentiation does not efficiently diminish vitamin D3 suppression on leukemia cells. Vitamin D3 up-regulates Beclin1, which binds to class III phosphatidylinositol 3-kinase to trigger autophagy. Vitamin D3 phosphorylates Bad in its BH3 domain, resulting in disassociation of the apoptotic Bad-Bcl-xL complex and association of Bcl-xL with Beclin1 and ultimate suppression of apoptotic signaling. Knockdown of Beclin1 eliminates vitamin D3-induced autophagy and inhibits differentiation but activates apoptosis, suggesting that Beclin1 is required for both autophagy and differentiation, and autophagy cooperates with differentiation but excludes apoptosis, in which Beclin1 acts as an interface for these three different cascades. Moreover, additional up-regulation of autophagy, but not apoptosis, dramatically improves vitamin D3 inhibition on leukemia cells. These findings extend our understanding of the action of vitamin D3 in antineoplastic effects and the role of Beclin1 in regulating multiple cellular cascades and suggest a potentially promising strategy with a significantly better antileukemia effect.  相似文献   

6.
The incidence of asthma, a complex disease and significant public health problem, has been increasing over the last 30 years for unknown reasons. Changes in environmental exposures or lifestyle may be involved. In some cases asthma may originate in utero or in early life. Associations have been found between in utero exposures to several xenobiotics and increased risk of asthma. There is convincing evidence that maternal smoking and/or in utero and perinatal exposure to environmental tobacco smoke are associated with increased risk of asthma. Similar effects have been demonstrated in animal models of allergic asthma. Evidence also suggests that in utero and/or early‐life exposures to various ambient air pollutants may increase the risk of asthma although supporting animal data are very limited. A few studies have suggested that in utero exposure to acetaminophen is associated with increased risk of asthma; however, animal data are lacking. Various vitamin deficiencies and supplements during pregnancy have been studied. In general, it appears that vitamins A, C, and E have protective effects and vitamins D and B may, in some instances, increase the risk, but the data are not conclusive. Some studies related to in utero exposures to polychlorinated biphenyls and bisphenol A and asthma risk are also reported. The underlying mechanisms for an association between xenobiotic exposures and asthma remain a matter of speculation. Genetic predisposition and epigenetic changes have been explored. The developing immune, respiratory, and nervous systems are potential targets. Oxidative stress and modulation of inflammation are thought to be involved. Birth Defects Research (Part C) 99:1–13, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLU, Prozac®) is commonly prescribed for depression in pregnant women. This results in SSRI exposure of the developing fetus. However, there are knowledge gaps regarding the impact of SSRI exposure during development. Given the role of serotonin in brain development and its cross-talk with sex hormone function, we investigated effects of developmental exposure to pharmacologically relevant concentrations of FLU (3 and 30 nM (measured)) on brain neurotransmitter levels, gonadal differentiation, aromatase activity in brain and gonads, and the thyroid system, using the Xenopus tropicalis model. Tadpoles were chronically exposed (8 weeks) until metamorphosis. At metamorphosis brains were cryosectioned and levels of serotonin, dopamine, norepinephrine, and their metabolites 5-hydroxyindoleacetic acid, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were measured in discrete regions (telencephalon, hypothalamus and the reticular formation) of the cryosections using high-performance liquid chromatography. Exposure to 30 nM FLU increased the concentration of 5-hydroxyindoleacetic acid in hypothalamus compared with controls. FLU exposure did not affect survival, time to metamorphosis, thyroid histology, gonadal sex differentiation, or aromatase activity implying that the effect on the serotonergic neurotransmitter system in the hypothalamus region was specific. The FLU concentration that impacted the serotonin system is lower than the concentration measured in umbilical cord serum, suggesting that the serotonin system of the developing brain is highly sensitive to in utero exposure to FLU. To our knowledge this is the first study showing effects of developmental FLU exposure on brain neurochemistry. Given that SSRIs are present in the aquatic environment the current results warrant further investigation into the neurobehavioral effects of SSRIs in aquatic wildlife.  相似文献   

8.
There is growing evidence for a role of vitamin D3 signalling in the brain. In this study, we investigated the influence of vitamin D3, in combination with glucocorticoids, on differentiation of the hippocampal progenitor line HIB5, as well as survival of rat primary hippocampal cells. In HIB5, pre-treatment with dexamethasone (Dex) alone inhibited neurite outgrowth and abolished activation of the mitogen-activated protein kinase (MAPK) pathway during platelet-derived growth factor (PDGF)-induced differentiation, consistent with previous findings. Interestingly, pre-treating HIB5 with vitamin D3 significantly reduced these effects of Dex and, in addition, lowered the transactivational function of the glucocorticoid receptor (GR) in transient reporter gene assays. A further impact of vitamin D3 on glucocorticoid effects was observed in a rat primary hippocampal culture known to be particularly sensitive to prolonged GR activation. In this model, Dex induced considerable cell death after 72 h of exposure in vitro. However, 24 h of pre-treatment with low doses of vitamin D3 substantially reduced the degree of Dex-induced apoptosis in primary hippocampal cells. Taken together, our experiments demonstrate a cross-talk between vitamin D3 and glucocorticoids in two hippocampal models, a feature that may have important implications in disorders with dysregulated glucocorticoid signalling, including major depression.  相似文献   

9.
1. Cyclophilin A (CyP-A), a soluble cytoplasmic immunophilin, is known for its involvement in T cell differentiation and proliferation. Although CyP-A has a pivotal role in the immune response, it is most highly concentratedin brain, where its functions are largely unknown.2. We reported previously that a murine neuroblastoma (NB-P2) cellline can partially differentiate into neurons when treated with cyclosporin A (CyS-A), implicating a role for CyP-A in neuronal differentiation (Hovland et al. [1999]. Neurochem. Int. 3:229–235).3. The role of CyP-A in regulating neuronal growth and differentiation is not well defined. To investigate this, we first tested the utility of retroviral-mediated gene transfer and expression in human embryonic brain (HEB) and NB-P2 cells. Second, we examined the effects of retroviral-mediated overexpression or antisense-mediated reduction of CyP-A in HEB and NB-P2 cells.4. Our data show that retroviral vectors are efficient for stable gene transfer and expression in both cell lines. Moreover, neither overexpression nor reduction of CyP-A expression in NB-P2 cells altered the growth rate or induced differentiation. More importantly, the up- or down-regulation of CyP-A expressiondid not affect the magnitude of cAMP-induced NB-P2 differentiation. However, overexpression of CyP-A increased the growth rate of HEB cells.5. In summary, the utility of retroviral vectors for stable gene expression in human embryonic brain and murine neuroblastoma cells was shown. Furthermore,a novel role for CyP-A in augmenting the proliferation of human embryonic braincells was demonstrated in vitro.  相似文献   

10.
The mechanisms regulating differentiation of oligodendrocyte (OLG) progenitor cells (OPCs) into mature OLGs are key to understanding myelination and remyelination. Signaling via the retinoid X receptor γ (RXR-γ) has been shown to be a positive regulator of OPC differentiation. However, the nuclear receptor (NR) binding partner of RXR-γ has not been established. In this study we show that RXR-γ binds to several NRs in OPCs and OLGs, one of which is vitamin D receptor (VDR). Using pharmacological and knockdown approaches we show that RXR–VDR signaling induces OPC differentiation and that VDR agonist vitamin D enhances OPC differentiation. We also show expression of VDR in OLG lineage cells in multiple sclerosis. Our data reveal a role for vitamin D in the regenerative component of demyelinating disease and identify a new target for remyelination medicines.  相似文献   

11.
Several studies have demonstrated that vitamin D regulates growth and differentiation in bone cells in vitro. In addition, in vivo studies have shown that vitamin D stimulates bone formation, increases the number of osteoblast precursor cells and prevents bone mineral loss. These observations indicate that vitamin D may have anabolic effects on bone, and thus therapeutic potential in the treatment of osteoporosis. However, little is known about the effects of vitamin D on apoptosis in bone cells and about the contribution of this process to the effect of vitamin D on bone mineral loss. To investigate this aspect in more detail, we studied the effect of 1alpha,25(OH)(2)D(3) and a series of analogues on apoptosis in human osteosarcoma cells. No significant induction of apoptosis was observed with any of the compounds after a 5 day treatment period. In contrast, some of the analogues showed a tendency to protect the cells from undergoing apoptosis. This anti-apoptotic effect of vitamin D was further confirmed by the ability of 1alpha,25(OH)(2)D(3) to suppress camptothecin- and staurosporin-induced DNA fragmentation in the cells. In cultures treated simultaneously with 1alpha,25(OH)(2)D(3) in combination with camptothecin or staurosporin, the level of DNA fragmentation was markedly reduced compared with cultures treated with camptothecin or staurosporin alone. On the basis of the present results, it is therefore concluded that vitamin D displays anti-apoptotic effects in human osteoblast-like osteosarcoma cells in vitro. This observation suggests that besides regulating growth and differentiation, vitamin D exerts its anabolic effects on bone by protecting osteoblastic cells from undergoing apoptosis.  相似文献   

12.
In HL-60 human myeloblastic leukemia cells, retinoic acid is known to cause cFMS, RAF, MEK, and ERK2 dependent myeloid cell differentiation and G0 arrest associated with RB tumor suppressor protein hypophosphorylation, implicating receptor tyrosine kinase signal transduction in propelling these retinoic acid-induced cellular effects. Furthermore, ectopic expression of polyoma middle T antigen, which activates similar early signal transduction molecules as PDGF class receptors such as cFMS, accelerates these retinoic acid-induced effects. To determine if this depends on middle T's ability to activate PLCgamma, PI-3 kinase, and src-like kinases, stable transfectants of HL-60 cells expressing either the polyoma middle T dl23 mutant, which is defective for PLCgamma and PI-3 kinase activation, or the Delta205 mutant, which in addition has greatly attenuated src-like kinase activation ability, were created and compared to wild-type middle T-transfected HL-60. The transgenes were under control of the retinoic acid (or 1, 25-dihydroxy vitamin D3) inducible Moloney murine leukemia virus LTRs. Expression of the dl23 or Delta205 mutant accelerated retinoic acid-induced cell differentiation. The effects of the mutants were comparable to those of the wild-type middle T. Likewise, retinoic acid-induced G0 arrest of mutant transfected cells and wild-type middle T transfected cells was similar. The same was true for 1, 25-dihydroxy vitamin D3-induced monocytic differentiation as for retinoic acid-induced myeloid differentiation. The mutants did not cause the same slight shortening of the cell cycle as wild-type middle T. Both the mutants and the wild-type middle T caused a similar increase in the cellular basal level of activated ERK2 MAPK. Since retinoic acid increases ERK2 activation, which is necessary for differentiation, the data suggest that mutant and wild-type middle T enhanced the retinoic acid effects by increasing basal levels of ERK2 activation. Consistent with this, the polyoma-induced foreshortening of the time for differentiation coincided with the time for retinoic acid to significantly increase ERK2 activation. As in wild-type HL-60, retinoic acid induced the early down-regulation of RXRalpha in mutant transfectants similar to wild-type middle T transfectants, consistent with no loss or gain of relevant functions due to the mutations. In contrast, vitamin D3 did not down-regulate RXRalpha in HL-60 or transfectants. Polyoma middle T and these transformation-defective mutants thus enhanced ERK2 activation to have an early effect in promoting retinoic acid-induced differentiation without a strong dependence on activating PLCgamma, PI-3 kinase, or src-like kinase.  相似文献   

13.
Impaired vitamin D status is common to many populations around the world. However, data suggest that this is a particular problem for specific groups such as pregnant women. This has raised important questions concerning the physiological and clinical impact of low vitamin D levels during pregnancy, with implications for classical skeletal functions of vitamin D, as well as its diverse non-classical actions. The current review will discuss this with specific emphasis on the classical calciotropic effects of vitamin D as well as the less well established immunological functions of vitamin D that may influence pregnancy outcome. The review also describes the pathways that are required for metabolism and function of vitamin D, and the various clinical complications that have been linked to impaired vitamin D status during pregnancy.  相似文献   

14.
There is growing evidence that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, our group has explored the role of 1,25(OH)(2)D(3) in brain development using whole animal models and in vitro culture studies. The expression of the vitamin D receptor (VDR) in the embryonic rat brain rises steadily between embryonic day 15-23, and 1,25(OH)(2)D(3) induces the expression of nerve growth factor and stimulates neurite outgrowth in embryonic hippocampal explant cultures. In the neonatal rat, low prenatal vitamin D(3) in utero leads to increased brain size, altered brain shape, enlarged ventricles, reduced expression of nerve growth factors, reduced expression of the low affinity p75 receptor and increased cellular proliferation. In summary, there is growing evidence that low prenatal levels of 1,25(OH)(2)D(3) can influence critical components of orderly brain development. It remains to be seen if these processes are of clinical relevance in humans, but in light of the high rates of hypovitaminosis D in pregnant women and neonates, this area warrants further scrutiny.  相似文献   

15.
After injection of 3H 1,25(OH)2 vitamin D3 to rats fed a vitamin D-deficient diet, nuclear concentration and retention of radioactivity exists in reticular cells of the thymus medulla and cortex, as well as outer cells of developing Hassal's corpuscles. Lymphocytes do not show nuclear concentration of radioactivity. Nuclear concentration in reticular cells is prevented by prior injection of excess 1,25(OH)2 vitamin D3. The results indicate that reticular-endothelial cells contain nuclear receptors for 1,25(OH)2 vitamin D3 and suggest that effects of 1,25(OH)2 vitamin D3 on immune response and lymphocyte differentiation are indirect and mediated through genomic modulation of reticular cell functions such as messenger secretion.  相似文献   

16.
Estrogen plays an important role during differentiation of midbrain dopaminergic neurons. This is indicated by the presence of estrogen receptors and the transient expression of the estrogen-forming enzyme aromatase within the dopaminergic cell groups. We have previously shown that estrogen regulates the plasticity of dopamine cells through the stimulation of neurite growth/arborization. In this study, we have analyzed the capability of estrogen to influence the activity of developing mouse dopamine neurons. The expression of tyrosine hydroxylase (TH) was assessed by competitive RT-PCR and Western blotting. The developmental expression of TH in the ventral midbrain was studied from embryonic day 15 until postnatal day 15 and revealed highest TH levels early postnatally. This profile coincides with the transient aromatase expression in this brain area. Using cultured midbrain cells, we found that estrogen increased TH mRNA/protein levels. The application of the estrogen receptor antagonist ICI 182,780 resulted in a complete inhibition of estrogen effects. To verify these data in vivo, fetuses were exposed in utero from E15 until birth to the aromatase inhibitor CGS 16949A or to CGS supplemented with estrogen. CGS caused a robust reduction in TH mRNA/protein levels in the midbrain, which could be restored by estrogen substitution. Taken together, our data strongly suggest that estrogen controls dopamine synthesis in the developing nigrostriatal dopaminergic system and support the concept that estrogen is implicated in the regulation of ontogenetic steps but also in the function of midbrain dopamine neurons.  相似文献   

17.
Perinatal hypoxic-ischemic (HI) insult is known to cause cellular and molecular disturbances leading to functional and behavioral abnormalities during brain development. In this study, we examined the effects of an in utero HI insult on poly-phosphoinositide turnover in vivo in the cerebrum and cerebellum as well as cholinergic-stimulated turnover in cortical slices from developing rat brain. In utero HI treatment was carried out by clamping the uterine blood vessels of near-term fetuses for 5, 10 and 15 min followed by resuscitation of the newborn pups. The in vivo protocol for examining poly-PI signaling activity in 2 week-old pup brain involved intracerebral injection of [3H]inositol for 16 hr and subsequent intraperitoneal injection with lithium (8 meq/kg) for 4 hr prior to decapitation. In the control pups, lithium elicited a 2.6 fold increase in labeled inositol phosphate (IP) in the cerebrum as compared to a 1.3 fold increase in the cerebellum. In utero HI insult (5 to 15 min) resulted in a small increase in labeled IP in the cerebrum but not in the cerebellum. Carbachol stimulation of poly-PI turnover was examined in brain slices prelabeled with [3H]inositol in vivo. Incubation of the prelabeled slices with carbachol in the presence of LiCl (10 mM) resulted in a time-, dose- and age-dependent increase in labeled IP. Brain slices from 2 week-old pups that experienced in utero HI-treatment for 10 and 15 min (but not 5 min) showed a significant decrease in carbachol-stimulation of labeled IP as compared with control pups. These results indicate the effects of in utero HI on the choninergic-stimulated poly-PI signaling pathway and its implication on related functional deficits in the developing brain.Abbreviations HI hypoxic-ischemia - poly-PI poly-phosphoinositides - IP inositol monophosphate, lithium  相似文献   

18.
In HL-60 human myeloblastic leukemia cells, retinoic acid is known to cause cFMS, RAF, MEK, and ERK2 dependent myeloid cell differentiation and G0 arrest associated with RB tumor suppressor protein hypophosphorylation, implicating receptor tyrosine kinase signal transduction in propelling these retinoic acid-induced cellular effects. Furthermore, ectopic expression of polyoma middle T antigen, which activates similar early signal transduction molecules as PDGF class receptors such as cFMS, accelerates these retinoic acid-induced effects. To determine if this depends on middle T's ability to activate PLCγ, PI-3 kinase, and src-like kinases, stable transfectants of HL-60 cells expressing either the polyoma middle T dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition has greatly attenuated src-like kinase activation ability, were created and compared to wild-type middle T-transfected HL-60. The transgenes were under control of the retinoic acid (or 1,25-dihydroxy vitamin D3) inducible Moloney murine leukemia virus LTRs. Expression of the dl23 or Δ205 mutant accelerated retinoic acid-induced cell differentiation. The effects of the mutants were comparable to those of the wild-type middle T. Likewise, retinoic acid-induced G0 arrest of mutant transfected cells and wild-type middle T transfected cells was similar. The same was true for 1,25-dihydroxy vitamin D3-induced monocytic differentiation as for retinoic acid-induced myeloid differentiation. The mutants did not cause the same slight shortening of the cell cycle as wild-type middle T. Both the mutants and the wild-type middle T caused a similar increase in the cellular basal level of activated ERK2 MAPK. Since retinoic acid increases ERK2 activation, which is necessary for differentiation, the data suggest that mutant and wild-type middle T enhanced the retinoic acid effects by increasing basal levels of ERK2 activation. Consistent with this, the polyoma-induced foreshortening of the time for differentiation coincided with the time for retinoic acid to significantly increase ERK2 activation. As in wild-type HL-60, retinoic acid induced the early down-regulation of RXRα in mutant transfectants similar to wild-type middle T transfectants, consistent with no loss or gain of relevant functions due to the mutations. In contrast, vitamin D3 did not down-regulate RXRα in HL-60 or transfectants. Polyoma middle T and these transformation-defective mutants thus enhanced ERK2 activation to have an early effect in promoting retinoic acid-induced differentiation without a strong dependence on activating PLCγ, PI-3 kinase, or src-like kinase.  相似文献   

19.
Mesenchymal stem cells (MSCs) possess self-renewal and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms such as histone modifications could be critical for determining the fate of stem cells. In this study, full human genome promoter microarrays and expression microarrays were used to explore the roles of histone modifications (H3K9Ac and H3K9Me2) upon the induction of MSC osteogenic differentiation. Our results revealed that the enrichment of H3K9Ac was decreased globally at the gene promoters, whereas the number of promoters enriched with H3K9Me2 was increased evidently upon osteogenic induction. By a combined analysis of data from both ChIP-on-chip and expression microarrays, a number of differentially expressed genes regulated by H3K9Ac and/or H3K9Me2 were identified, implicating their roles in several biological events, such as cell cycle withdraw and cytoskeleton reconstruction that were essential to differentiation process. In addition, our results showed that the vitamin D receptor played a trans-repression role via alternations of H3K9Ac and H3K9Me2 upon MSC osteogenic differentiation. Data from this study suggested that gene activation and silencing controlled by changes of H3K9Ac and H3K9Me2, respectively, were crucial to MSC osteogenic differentiation.  相似文献   

20.
Since its discovery, vitamin E has been extensively researched by a large number of investigators in an attempt to fully understand its role in a variety of pathophysiological contexts. The vast majority of published work has focused on vitamin E's antioxidant properties, which is why it is well known as a lipophilic antioxidant that protects membranes from being oxidatively damaged by free radicals. However, several lines of investigation have recently revealed that vitamin E has biological roles unrelated to its antioxidant properties. Among these roles, vitamin E has been described as: a regulator of signal transduction, gene expression, and redox sensor. In parallel with the discovery of novels cellular functions of vitamin E, the introduction of the free radical theory of brain aging has propelled a renewed interest in this vitamin. Most of the resulting work has been based on the postulate that, by preventing and/or minimizing the oxidative stress-dependent brain damage, vitamin E could be used as therapeutic approach. In this article, we will consider the existing literature regarding the biological properties of vitamin E and the potential therapeutic and/or preventative roles that this natural dietary factor plays in brain aging, cognition, and Alzheimer's dementia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号