首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation inactivation of microsomal glutathione S-transferase   总被引:1,自引:0,他引:1  
Radiation inactivation analysis was used to determine the target size of rat liver microsomal glutathione S-transferase both in situ and following purification. When Tris-HCl-washed microsomes were irradiated, there was a 1.5-2.0-fold increase in enzymatic activity over the first 3-6 megarads followed by a decrease in enzymatic activity. Above 48 megarads the radiation inactivation curve of the Tris-HCl-washed microsomes was described by a monoexponential function which gave a target size of 48 kDa. The enzymatic activity of the microsomal enzyme was selectively increased by treating the Tris-HCl-washed microsomes either with N-ethylmaleimide or washing the microsomes with small unilamellar vesicles made from phosphatidylcholine. The inactivation curves obtained with both types of treated microsomes were simple monoexponential decays in enzymatic activity with target sizes of 46 kDa (N-ethylmaleimide) and 44 kDa (unilamellar vesicles). The microsomal enzyme was detergent solubilized and purified. The Mr value of the purified protein was 15,500 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). These data suggest that the functional unit of the microsomal form of glutathione S-transferase in situ is a trimer. The target size of the purified enzyme solubilized in Triton X-100 was 85 kDa, and no increase in activity was observed at the lower radiation doses. The increase in the target size of the purified enzyme could not be ascribed solely to the presence of the detergent. This result suggests that the microsomal form of this enzyme can exist as catalytically active oligomers of different sizes depending on its environment.  相似文献   

2.
The functional molecular weight of rat liver 3-hydroxy-3-methylglutaryl-CoA reductase was determined by radiation inactivation. Both isolated hepatic microsomes and primary hepatocytes were irradiated with high energy electrons at -135 degrees C, and the residual microsomal enzyme activity was subsequently determined. The loss of enzyme activity in both irradiated microsomes and microsomes isolated from irradiated hepatocytes followed a single exponential decay which corresponded to a molecular mass of 200 kDa. This minimal molecular size of the functional enzyme was unaffected by either addition of cholestyramine to the rat diet or addition of 25-hydroxycholesterol plus mevalonate to the isolated rat hepatocytes. In addition, surviving enzyme protein was determined by immunoprecipitation of radiolabeled enzyme from hepatocytes that had been incubated with [35S]methionine before irradiation. The target size for loss of the monomer subunits was 98 kDa. The simplest interpretation of these results is that rat liver 3-hydroxy-3-methylglutaryl-CoA reductase in situ is a noncovalently linked dimer of the Mr = 97,200 enzyme subunit.  相似文献   

3.
Radiation inactivation was used to determine the functional molecular size of the rat liver membrane protein which binds desialylated glycoproteins. Purified plasma membranes from rat liver were irradiated with high energy electrons from a linear accelerator and then assayed for 125I-asialo-orosomucoid binding activity. Target size analysis of the data revealed that increasing doses of ionizing radiation from 1-48 megarads resulted in a monoexponential decay in binding activity due to a decrease in the number of available binding sites; dissociation and binding affinity were unaffected. The molecular weight of the rat binding protein, determined in situ by target analysis, was 104,000 +/- 17,000; that of the rabbit binding protein was 109,000 +/- 5,000. Comparison of the value obtained by irradiation of the intact rat plasma membrane with that of the purified receptor revealed the latter to have an apparent molecular weight of 148,000 +/- 16,000. Evidence is presented to indicate that the observed increase in target size was a response to the presence of Triton X-100 used in the solubilization and assay procedure. In contrast to the size of the ligand binding functional unit, the antireceptor antibody binding site was estimated to be 30,000 +/- 2,000.  相似文献   

4.
The functional molecular mass of the cholate, phallotoxin, iodipamide, and ouabain transport proteins in isolated basolateral plasma membrane vesicles was determined by radiation inactivation. Purified basolateral plasma membrane vesicles were irradiated (-90 to -120 degrees C) with high energy electrons from a 10-MeV linear accelerator at doses from 0 to 30 megarads. After each dose, the initial uptake, the equilibrium binding, and the binding of the substrates at 4 degrees C were checked. The size of the transporting function was, for cholate, 107 +/- 8.9 kDa; for phallotoxin, 104 +/- 7 kDa; and for ouabain, 120 +/- 4.7 kDa. The target size for the binding proteins was 56 +/- 4.2, 57 +/- 5, and 47.2 +/- 1.95 kDa for cholate, phallotoxin, and taurocholate, respectively. In the case of iodipamide, the functional molecular mass for both the transport and binding proteins was 54 +/- 4.8 kDa.  相似文献   

5.
Frozen rat liver microsomes and rough endoplasmic reticulum were irradiated with high energy electrons. The surviving enzymatic activity of acyl-CoA:cholesterol acyltransferase and activity for esterification of 25-hydroxycholesterol decreased as a simple exponential function of radiation exposure, leading to a target size of 170-180 kDa. The loss of acyl-CoA hydrolase activity with a radiation dose was complex and resolved as a 45-kDa enzyme associated with a large inhibitor. It is interpreted that acyl-CoA hydrolase is the acyl-CoA-binding component and the inhibitor is the cholesterol-binding component of acyl-CoA:cholesterol acyltransferase.  相似文献   

6.
A procedure for the purification of the enzyme bile acid:CoA ligase from guinea pig liver microsomes was developed. Activity toward chenodeoxycholate, cholate, deoxycholate, and lithocholate co-purified suggesting that a single enzyme form catalyzes the activation of all four bile acids. Activity toward lithocholate could not be accurately assayed during the earlier stages of purification due to a protein which interfered with the assay. The purified ligase had a specific activity that was 333-fold enriched relative to the microsomal cell fraction. The purification procedure successfully removed several enzymes that could potentially interfere with assay procedures for ligase activity, i.e. ATPase, AMPase, inorganic pyrophosphatase, and bile acid-CoA thiolase. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified ligase gave a single band of approximately 63,000 Mr. A molecular size of 116,000 +/- 4,000 daltons was obtained by radiation inactivation analysis of the ligase in its native microsomal environment, suggesting that the functional unit of the ligase is a dimer. The purified enzyme was extensively delipidated by adsorption to alumina. The delipidated enzyme was extremely unstable but could be partially stabilized by the addition of phospholipid vesicles or detergent. However, such additions did not enhance enzymatic activity. Kinetic analysis revealed that chenodeoxycholate, cholate, deoxycholate, and lithocholate were all relatively good substrates for the purified enzyme. The trihydroxy bile acid cholate was the least efficient substrate due to its relatively low affinity for the enzyme. Bile acid:CoA ligase could also be solubilized from porcine liver microsomes and purified 180-fold by a modification of the above procedure. The final preparation contains three polypeptides as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The three peptides range in size from 50,000 to 59,000, somewhat smaller than the guinea pig enzyme. The functional size of the porcine enzyme in its native microsomal environment was determined by the technique of radiation inactivation analysis to be 108,000 +/- 5,000 daltons. Thus, the functional form of the porcine enzyme also appears to be a dimer.  相似文献   

7.
Treatment of microsomes with EDTA abolishes the stimulation of glucuronidation produced by UDP-N-acetylglucosamine. Addition of divalent metal ions to EDTA-treated microsomes restores the sensitivity of UDP-glucuronyltransferase to UDP-N-acetylglucosamine. Regulation of the activity of this enzyme by UDP-N-acetylglucosamine depends, therefore, on the presence of divalent metal ions. In addition, divalent metals increase the rate of glucuronidation of p-nitrophenol at Vmax. The data indicate that metals are essential for the efficient function of UDP-glucuronyltransferase.  相似文献   

8.
Liver microsomes from pig embryos synthesized dolichyl pyrophosphate N-acetylglucosamine and converted it to dolichyl pyrophosphate N,N'-diacetylchitobiose. N-acetylglucosaminyl transferase activity towards dolichol was about 2-fold greater in microsomes from embryonic liver than in microsomes from adult liver. A maximum level of conversion of dolichyl pyrophosphate N-acetylglucosamine to dolichyl pyrophosphate N,N'-diacetylchitobiose was achieved at 5 mM concentration of unlabelled UDP-N-acetylglucosamine, while this conversion was negligible at lower UDP-N-acetylglucosamine concentrations (0.1 and 0.5 mM). The level of dolichyl phosphate, assessed by the level of dolichyl pyrophosphate N-acetylglucosamine synthesis was 2-fold higher in microsomes from embryonic liver than that in microsomes from adult liver. Tunicamycin (1 microgram/ml) inhibited completely the formation of dolichyl pyrophosphate N-acetyl-glucosamine in embryonic liver microsomes, while the inhibitory effect of UMP (1 mM) was about 70%.  相似文献   

9.
Rat liver cytosolic epoxide hydrolase has been purified and characterized. The enzyme was purified from tiadenol-induced rat liver 540-fold with respect to trans-stilbene oxide as a substrate. Similar purification was obtained with the substrates trans-beta-ethyl styrene oxide and styrene 7,8-oxide, the specific activities decreasing in the order trans-beta-ethyl styrene oxide greater than styrene 7,8-oxide greater than trans-stilbene oxide. The enzyme exerts highest activity at pH 7.4 Km and Vmax of the pure enzyme for trans-stilbene oxide were 1.7 microM and 205 nmol x min-1 x mg protein-1 respectively. With trans-stilbene oxide as a substrate, the inhibition by organic solvents (2.5% by vol.) increased in the order ethanol less than methanol less than acetone less than isopropanol = N,N-dimethyl formamide less than acetonitrile less than tetrahydrofuran. The native enzyme, with a molecular mass of 120 kDa, consists of two 61-kDa subunits. Digestion of rat liver cytosolic and microsomal epoxide hydrolase by three proteases resulted in markedly different peptide maps. Western-blot analysis with antiserum against rat liver cytosolic epoxide hydrolase revealed a single band with the purified enzyme, and with liver cytosol from control and clofibrate-induced rats. No cross-reactivity was observed with purified rat microsomal epoxide hydrolase or microsomes. A positive reaction at the same molecular mass was obtained with liver cytosol of mouse, guinea pig, Syrian hamster and New Zealand white rabbit but not with that of green monkey.  相似文献   

10.
1. Basal rates of glucuronidation of oestrone (guinea pig) or of 4-nitrophenol (rat or guinea pig) were not significantly altered in sealed liver microsomal vesicles, treated with the membrane-impermeant protein-modifying agent diazobenzenesulphonate at 0.5-1.0 mM. 2. Contrarily, diazobenzenesulphonate abolished the normal stimulation of glucuronidation by UDP-N-acetylglucosamine. 3. Ultrasonication to increase microsomal permeability activated glucuronidation by 680-750% and permitted significant inhibition by diazobenzenesulphonate. 4. These findings are consistent with a model wherein glucuronyltransferases are embedded in the luminal leaflet of the endoplasmic reticulum and access of UDP-glucuronic acid to the transferases is facilitated by transmembrane carriers, which are stimulated by UDP-N-acetylglucosamine and are available to diazobenzenesulphonate; ultrasonication serves to permit access of diazobenzenesulphonate to glucuronyltransferases themselves, resulting in inhibition of their activity.  相似文献   

11.
Monoclonal antibodies (mAbs) against the soluble form (S-COMT) of catechol-O-methyltransferase (COMT, EC 2.1.1.6) were produced using a purified preparation of the enzyme from pig liver as antigen. The selected monoclonal antibodies recognized the enzyme with different capacities. One of them (Co60-1B/7) showed a significant cross reaction with S-COMT from rat and human liver. A protein band of 23 kDa was recognized by the mAbs on Western blots of the soluble fraction of pig liver. The mAbs were also able to recognize the membrane-bound form of the enzyme, which was found to be mainly localized in the microsomal fraction of pig and rat liver as well as of the human hepatoma cell line Hep G2. The protein bands detected in microsomes had a molecular mass of 26 kDa in pig and rat liver and displayed a slightly higher molecular mass (29 kDa) in the Hep G2 cell line. A single step method for the immunoaffinity purification of pig liver S-COMT was developed by using a Sepharose 4B column to which the mAb Co54-5F/8 was covalently coupled. Acid elution conditions were optimized to obtain the enzyme in active form with a good yield. SDS-PAGE analysis of the purified preparation revealed a single protein band with a molecular mass of 23 kDa with 154-fold enrichment in enzyme activity over the starting material. Since the N-terminus was blocked, purified enzyme preparations were cleaved with trypsin. Two fragments of 22 and 33 amino acids in length could be sequenced by Edman degradation.  相似文献   

12.
Determination of the functional molecular size of vasopressin isoreceptors   总被引:1,自引:0,他引:1  
P Crause  R Boer  F Fahrenholz 《FEBS letters》1984,175(2):383-386
The molecular size of vasopressin receptors in the intact membrane-bound state was determined by radiation inactivation (target size analysis). For the V1 receptor in rat liver a molecular size of (76 +/- 8) kDa was determined. For the V2 receptor in rat kidney and bovine kidney molecular sizes of (95 +/- 4) and (108 +/- 11) kDa were found. Statistical analysis gave evidence for size differences between rat liver and rat kidney receptors or differences between rat liver and bovine kidney receptors, but not between kidney receptors from different species. The results suggest that V1 and V2 receptors can be distinguished by functional properties as well as by their size.  相似文献   

13.
Microsomal sn-glycerol 3-phosphate acyltransferase from the guinea pig Harderian gland was studied. Its specific activity (1.0 nmol/min X mg, with palmitoyl-CoA as a substrate) was almost the same as that of the rat liver microsomal enzyme. The enzyme acted on various types of acyl-CoA, the relative reaction rates being as follows: palmitoyl-CoA, 100(%); stearoyl-CoA, 30; oleoyl-CoA, 50; linoleoyl-CoA, 40; and arachidonoyl-CoA, 20. When assayed in the presence of 1 mM 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the activity on palmitoyl-CoA was inhibited by only 20-30%, whereas those for other acyl-CoAs were completely abolished. The DTNB-resistant activity was inhibited by 0.1 mM dihydroxyacetonephosphate and 0.5 mM dithiothreitol, whereas the DTNB-sensitive activity was not affected. Furthermore, heat treatment at 50 degrees C for 15 min abolished most of the DTNB-sensitive activity, but not the DTNB-resistant activity. These results, taken together, suggested that the microsomal fraction of the guinea pig Harderian gland contained at least two types of sn-glycerol 3-phosphate acyltransferase, and that, in contrast to in the case of rat liver microsomes, a DTNB-resistant enzyme that utilized exclusively palmitoyl-CoA was predominant.  相似文献   

14.
Frozen samples of membrane-bound pig kidney Na,K-ATPase were subjected to target size analysis by radiation inactivation with 10-MeV electrons at -15 degrees C. The various properties investigated decreased monoexponentially with radiation dose, and the decay constants, gamma, were independent of the presence of other proteins and of sucrose concentrations above 0.25 M. The temperature factor was the same as described by others. Irradiation of four proteins of known molecular mass, m, showed that gamma for protein integrity was proportional to m with a proportionality factor about 20% higher than that conventionally used. By this standard curve, glucose-6-phosphate dehydrogenase activity used as internal standard gave a radiation inactivation size of 110 +/- 5 kDa, very close to m = 104-108 kDa for the dimer, as expected. For Na+/K+-transporting ATPase the following target sizes and radiation inactivation size values were very close to m = 112 kDa for the alpha-peptide: peptide integrity of alpha, 115 kDa; unmodified binding sites for ATP and vanadate, 108 kDa; K+-activated p-nitrophenylphosphatase activity, 106 kDa. There was thus no sign of dimerization of the alpha-peptide or involvement of the beta-peptide. In contrast, optimal Na+/K+-transporting ATPase activity had a radiation inactivation size = 189 +/- 7 kDa, and total nucleotide binding capacity corresponded to 72 +/- 3 kDa. These latter results will be extended and discussed in a forthcoming paper.  相似文献   

15.
The antioxidative effect of selenium cannot be exclusively due to the functioning of the selenium-dependent glutathione peroxidase mechanism of utilization of various hydroperoxides. This hypothesis is based on the following experimental evidence. Selenium ions are readily incorporated into animal organs and tissues immediately after injection (2 hours) as well as into cell organelles and cytosol where they inhibit lipid peroxidation. The activity of glutathione peroxidase (EC 1.1.1.19) in rat liver and guinea pig cytosol is thereby unchanged but increases drastically after 12 hours reaching a maximum an the 3rd-4th day. The effectiveness of lipid peroxidation inhibition does not increase under these conditions. Although the glutathione peroxidase activity is absent in the nuclei and microsomes, exogenous selenium inhibits lipid peroxidation in these organelles. The activity of the rat liver cytosolic enzyme markedly exceeds that of its guinea pig counterpart. However, lipid peroxidation in guinea pig liver occurs less intensively than that in rat liver cytosol.  相似文献   

16.
D Kupfer  J Navarro 《Life sciences》1976,18(5):507-513
This study demonstrates the metabolic transformation of prostaglandin A1 (PGA1) by guinea pig and rat liver microsomes. The transformation, which required NADPH and oxygen, yielded polar (presumably hydroxylated) products. Incubations with guinea pig liver microsomes yielded one zone of product on tlc, whereas rat liver microsomes produced two discernable metabolic zones. It was demonstrated that PGA1 metabolism in the guinea pig and the rat was inhibited by the addition of SKF-525A, metyrapone, carbon monoxide and cytochrome C; nicotinamide (10 mM) inhibited only the guinea pig system. These findings indicate that the enzymatic activity responsible for PGA1 metabolism is composed of a typical cytochrome P-450 monooxygenase system.  相似文献   

17.
Radiation inactivation analysis of liver pieces yielded a target size of 210 kDa for hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase [S)-mevalonate:NADP+ oxidoreductase (CoA-acylating), EC 1.1.1.34) from rats fed a normal diet. Feeding a diet containing mevinolin and colestipol, which causes a marked increase in enzyme activity, resulted in a reduction of the target size to 120 kDa. These results are consistent with those obtained by radiation inactivation and immunoblotting analysis of isolated microsomes and suggest that the increase in HMG-CoA reductase activity caused by these dietary agents is accompanied by a change from a dimer to a monomer form of the enzyme.  相似文献   

18.
Purification and characterization of trimming glucosidase I from pig liver   总被引:5,自引:0,他引:5  
Trimming glucosidase I has been purified about 400-fold from pig liver crude microsomes by fractional salt/detergent extraction, affinity chromatography and poly(ethylene glycol) precipitation. The purified enzyme has an apparent molecular mass of 85 kDa, and is an N-glycoprotein as shown by its binding to concanavalin A-Sepharose and its susceptibility to endo-beta-N-acetylglucosaminidase (endo H). The native form of glucosidase I is unusually resistant to non-specific proteolysis. The enzyme can, however, be cleaved at high, that is equimolar, concentrations of trypsin into a defined and enzymatically active mixture of protein fragments with molecular mass of 69 kDa, 45 kDa and 29 kDa, indicating that it is composed of distinct protein domains. The two larger tryptic fragments can be converted by endo H to 66 kDa and 42 kDa polypeptides, suggesting that glucosidase I contains one N-linked high-mannose sugar chain. Purified pig liver glucosidase I hydrolyzes specifically the terminal alpha 1-2-linked glucose residue from natural Glc3-Man9-GlcNAc2, but is inactive towards Glc2-Man9-GlcNAc2 or nitrophenyl-/methyl-umbelliferyl-alpha-glucosides. The enzyme displays a pH optimum close to 6.4, does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (Ki approximately 2.1 microM), N,N-dimethyl-1-deoxynojirimycin (Ki approximately 0.5 microM) and N-(5-carboxypentyl)-1-deoxynojirimycin (Ki approximately 0.45 microM), thus closely resembling calf liver and yeast glucosidase I. Polyclonal antibodies raised against denatured pig liver glucosidase I, were found to recognize specifically the 85 kDa enzyme protein in Western blots of crude pig liver microsomes. This antibody also detected proteins of similar size in crude microsomal preparations from calf and human liver, calf kidney and intestine, indicating that the enzymes from these cells have in common one or more antigenic determinants. The antibody failed to cross-react with the enzyme from chicken liver, yeast and Volvox carteri under similar experimental conditions, pointing to a lack of sufficient similarity to convey cross-reactivity.  相似文献   

19.
Rat liver acyl coenzyme A:diacylglycerol acyltransferase, an intrinsic membrane activity associated with the endoplasmic reticulum, catalyzes the terminal and rate-limiting step in triglyceride synthesis. This enzyme has never been purified nor has its gene been isolated. Inactivation by ionizing radiation and target analysis were used to determine its functional size in situ. Monoexponential radiation inactivation curves were obtained which indicated that a single-sized unit of 72 +/- 4 kDa is required for expression of activity. The size corresponds only to the protein portion of the target and may represent one or several polypeptides.  相似文献   

20.
Estrone sulfate sulfohydrolase (estrogen sulfatase) activity was solubilized by treatment with Triton X-100 from 105,000 g pellets of guinea pig uterus, testis and brain, as well as from rat liver and human placenta. The solubilized forms were subjected to chromatofocusing in the fast protein liquid chromatography (FPLC) system and on conventional columns packed in our laboratory. The guinea pig tissue pattern was complex. Uterus showed peaks of activity with apparent pI's of 9.11 and 7.6; testis contained 3 peaks with pI's of 9.18, 8.7 and 7.5; brain possessed peaks with pI's of 9.28 and 8.6. In each case the major activity peak was that with pI greater than 9. Rat liver activity chromatofocused as a single peak of apparent pI = 6.87 and the human placental enzyme also showed a single, though broad, peak, of pI = 6.57. This suggests not only that the guinea pig enzyme(s) differs markedly from those of rat liver and human placenta, but that there may be qualitative differences between the forms in the three guinea pig tissues. Chromatofocusing behaviour was not independent of the specific exchange resins and ampholytes utilized. The recovered enzyme activity was fairly stable and it seems that chromatofocusing could be a useful step in purification of the guinea pig enzyme(s), particularly the main form possessing a pI greater than 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号