首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is an important enzyme in the removal of lipid hydroperoxides (LOOHs) from cell membranes. Cancer treatments such as photodynamic therapy (PDT) induce lipid peroxidation in cells as a detrimental action. The photosensitizers used produce reactive oxygen species such as singlet oxygen ((1)O(2)). Because singlet oxygen introduces lipid hydroperoxides into cell membranes, we hypothesized that PhGPx would provide protection against the oxidative stress of singlet oxygen and therefore could interfere with cancer treatment. To test this hypothesis, human breast cancer cells (MCF-7) were stably transfected with PhGPx cDNA. Four clones with varying levels of PhGPx activity were isolated. The activities of other cellular antioxidant enzymes were not influenced by the overexpression of PhGPx. Cellular PhGPx activity had a remarkable inverse linear correlation to the removal of lipid hydroperoxides in living cells (r = -0.85), and correlated positively with cell survival after singlet oxygen exposure (r = 0.94). These data demonstrate that PhGPx provides significant protection against singlet oxygen-generated lipid peroxidation via removal of LOOH and suggest that LOOHs are major mediators in this cell injury process. Thus, PhGPx activity could contribute to the resistance of tumor cells to PDT.  相似文献   

2.
Comparing beta-carotene,vitamin E and nitric oxide as membrane antioxidants   总被引:2,自引:0,他引:2  
Singlet oxygen initiates lipid peroxidation via a nonfree radical mechanism by reacting directly with unsaturated lipids to form lipid hydroperoxides (LOOHs). These LOOHs can initiate free radical chain reactions leading to membrane leakage and cell death. Here we compare the ability and mechanism by which three small-molecule membrane antioxidants (beta-carotene, alpha-tocopherol and nitric oxide) inhibit lipid peroxidation in membranes. We demonstrate that beta-carotene provides protection against singlet oxygen-mediated lipid peroxidation, but does not slow free radical-mediated lipid peroxidation. Alpha-Tocopherol does not protect cells from singlet oxygen, but does inhibit free radical formation in cell membranes. Nitric oxide provides no direct protection against singlet oxygen exposure, but is an exceptional chain-breaking antioxidant as evident from its ability to blunt oxygen consumption during free radical-mediated lipid peroxidation. These three small-molecule antioxidants appear to have complementary mechanisms for the protection of cell membranes from detrimental oxidations.  相似文献   

3.
Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is an antioxidant enzyme that reduces cellular phospholipid hydroperoxides (PLOOHs) to alcohols. Cellular peroxide tone has been implicated in cell growth and differentiation. By reducing the PLOOH level in the cell membrane, PhGPx regulates the peroxide tone and thereby might be involved in cell growth. We hypothesized that overexpression of PhGPx in human breast cancer cells would decrease their growth rate. We stably transfected MCF-7 cells (Wt) with L-PhGPx and measured cell doubling time, plating efficiency, and cell cycle phase transit times. P-4 cells (8-fold increase in PhGPx activity) showed a 2-fold increase in doubling time; doubling time increased directly with PhGPx activity (r = 0.95). The higher the PhGPx activity, the lower the plating efficiency (r = -0.86). The profile of other antioxidant enzymes was unchanged. Overexpression of PhGPx lowered the steady-state level of PLOOH (by > 60%). Results from bromodeoxyuridine pulse-chase experiments and flow cytometry indicate that PhGPx induced a delay in MCF-7 proliferation that was primarily due to a slower progression from G1 to S. These results support the hypothesis that PhGPx plays a regulatory role in the progression of MCF-7 cells from G1 to S possibly by regulating the steady-state levels of PLOOH. These data suggest that PhGPx can lower the peroxide tone, which might change the cellular redox environment resulting in a delay in G1 transit. Thus, PhGPx could be an important factor in cell growth.  相似文献   

4.
The goal of our study was to investigate the mechanism by which changes in extracellular pH influence lipid peroxidation processes. Ferrous iron can react with hydroperoxides, via a Fenton-type reaction, to initiate free radical chain processes. Iron is more soluble at lower pH values, therefore we hypothesized that decreasing the environmental pH would lead to increased iron-mediated lipid peroxidation. We used Photofrin, a photosensitizer that produces singlet oxygen, to introduce lipid hydroperoxides into leukemia cells (HL-60, K-562, and L1210). Singlet oxygen reacts with the PUFA of cells producing lipid hydroperoxides. Using EPR spin trapping with POBN, free radical formation from HL-60 cells was only detected when Photofrin, light, and ferrous iron were present. Free radical formation increased with increasing iron concentration; in the absence of extracellular iron, radical formation was below the limit of detection and lipid hydroperoxides accumulated in the membrane. In the presence of iron, lipid-derived radical formation in cells is pH dependent; the lower the extracellular pH (7.5-5.5), the higher the free radical flux; the lower the pH, the greater the membrane permeability induced in K-562 cells, as determined by trypan blue dye exclusion. These data demonstrate that lipid peroxidation processes, mediated by iron, are enhanced with decreasing extracellular pH. Thus, acidic pH not only releases iron from "safe" sites, but this iron will also be more damaging.  相似文献   

5.
6.
The aim of this study was to determine whether alpha-tocopherol and zeaxanthin offer synergistic protection against photosensitized lipid peroxidation mediated by singlet oxygen and free radicals. The antioxidant action of zeaxanthin and alpha-tocopherol was studied in liposomes made of phosphatidylcholine and cholesterol. Progress of lipid peroxidation, induced by aerobic photoexcitation of rose bengal, was monitored by the detection of lipid hydroperoxides and by electron spin resonance oximetry. In addition, cholesterol was employed as a mechanistic reporter molecule, which forms characteristic products of the interaction with singlet oxygen or free radicals. Cholesterol hydroperoxides were quantitatively determined by HPLC/electrochemical detection. HPLC/ultraviolet-visible (UV-VIS) absorption detection was used to measure concentrations of zeaxanthin and alpha-tocopherol. Zeaxanthin, even at concentrations of 2.5 microM, effectively protected against singlet oxygen-mediated lipid peroxidation but was rapidly consumed due to interaction with free radicals. alpha-Tocopherol alone was not effective in protecting against lipid peroxidation, even at concentration of 0.1 mM. Combinations of zeaxanthin and alpha-tocopherol exerted a synergistic protection against lipid peroxidation. The synergistic effect may be explained in terms of prevention of carotenoid consumption by effective scavenging of free radicals by alpha-tocopherol therefore allowing zeaxanthing to quench the primary oxidant-singlet oxygen effectively.  相似文献   

7.
Salicylic acid (SA) could inhibit catalase activity, induce rapid lipid peroxidation and PR-1 gene expression of the tobacco ( Nicotiana tabacum L. ) cell culture which was incubated with exogenous SA. Ρ-ihydroxybenzene and H2O2 could also induce lipid peroxidation and PR-1 gene expression at different level, but they were not able to inhibit the catalase activity of tobacco cells. Inhi0itors of mRNA and protein-synthesis (a-amanitine and cycloheximide, respectively) could not induce both lipid peroxidation and PR-1 gene expression of tobacco cell culture. However, coordinated action with SA respectively, a-amanitine or cycloheximide was able to induce lipid peroxidation effectively, but strongly blocked the activation of PR-1 gene expression by SA in tobacco cell culture. These results suggested that the generation of reactive metabolites or free radicals, which were induced by SA or other inducers through reaction with catalase or other compounds, initiated lipid peroxidation, subsequently activated pathogen-resistance genes expression. Obviously the lipid peroxidation molecule played an important role in SA signal transduction in tobacco.  相似文献   

8.
Antisense oligodeoxynucleotide strategies have been employed in a variety of eukaryotic systems both to understand normal gene function and to block gene expression. Pharmacologically, 'code blockers' are ideal agents for antitumour and antimicrobial treatments because of their specific mode of action. Here we report the inhibition of duck hepatitis B virus (DHBV) by antisense oligodeoxynucleotides in primary duck hepatocyte cultures in vitro as well as in DHBV-infected Pekin ducks in vivo. The most effective antisense oligodeoxynucleotide was directed against the 5' region of the pre-S gene and resulted in a complete inhibition of viral replication and gene expression in vitro and in vivo. These results demonstrate the application of antisense oligodeoxynucleotides in vivo and exemplify their potential as human antiviral therapeutics.  相似文献   

9.
The molecular basis of the sunlight-induced skin carcinogenesis has been elucidated. Of the two ultraviolet components of sunlight that reach the earth's surface the UV-B is known to be carcinogenic but the mode of action of UV-A, the predominant component of sunlight, is ill understood. Using the liposomes as a model system, it has been shown here that UV-A causes dose-dependent lipid peroxidation as estimated by measurements of conjugated dienes, lipid hydroperoxides, malondialdehydes and the fluorescent adducts (Schiff bases) produced by the reaction of MDA with glycine. Direct exposure to sunlight has also been shown to cause dose-dependent lipid peroxidation. The UV-A induced lipid peroxidation has also been shown to be dependent on dose rate. While the sodium formate, dimethyl sulphoxide, superoxide dismutase and EDTA do not have any significant effect, sodium azide, histidine, beta-carotene and dimethylfuran were shown to inhibit significantly the UV-A induced lipid peroxidation, thereby providing significant evidence of the involvement of singlet oxygen (1O2) as the initiating agent. The use of D2O in place of H2O as the liposome dispersing medium enhanced to great extent the UV-A induced lipid peroxidation, thereby lending additional support to the finding that singlet oxygen was the initiating agent. The possible mode of formation of 1O2 on exposure to UV-A was discussed. This study also highlighted the role of environmental factors on the sunlight-induced cutaneous damage. Finally, the relation between lipid peroxidation, DNA damage and carcinogenesis has been discussed in a way to suggest the possible link between sunlight exposure and causation of skin cancer.  相似文献   

10.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

11.
Unsaturated fatty acids constitutive of cardiac membranal lipid matrix are one of the primary targets for reactive oxygen species generated during ischemia-reperfusion cycle. Lipid peroxidation is a cascade of intricate reactions involving the successive formations of fatty acids hydroperoxides and aldehydic compounds such as alkenals derived from the oxidative fragmentation of these hydroperoxides. The potential deleterious effects of different classes of lipid peroxidation products on cardiac cells were compared using three in vitro approaches: (i) cardiomyocyte integrity, (ii) electromechanical activity of papillary muscle, and (iii) atrial contractility. The following products of lipid peroxidation were tested: (i) photoperoxidized arachidonic acid pooling hydroperoxidized derivatives and aldehydic compounds, (ii) fatty acids hydroperoxides, and (iii) 4-hydroxynonenal, a characteristic alkenal derived from the oxidative fragmentation of hydroperoxidized n-6 fatty acids. Only fatty acids hydroperoxides induced drasfic loss of cellular integrity and severe disturbances in electromechanical activity of cardiomyocytes. 4-hydroxynonenal induced only a slight leak of lactate dehydrogenase at high concentrations and did not modify the electromechanical behavior of cardiac preparations. Under our conditions, monohydroperoxidized fatty acids but not 4-hydroxynonenal induced acute cardiac cell damages. In conclusion, lipid hydroperoxides can be considered both as markers of oxidative injury and relay sources of oxidative stress.  相似文献   

12.
Hypochlorite or its acid, hypochlorous acid, may exert both beneficial and toxic effects in vivo. In order to understand the role and action of hypochlorite, the formation of active oxygen species and its kinetics were studied in the reactions of hypochlorite with peroxides and amino acids. It was found that tert-butyl hydroperoxide and methyl linoleate hydroperoxide reacted with hypochlorite to give peroxyl and/or alkoxyl radicals with little formation of singlet oxygen in contrast to hydrogen peroxide, which gave singlet oxygen exclusively. Amino acids and ascorbate reacted with hypochlorite much faster than peroxides. Free radical-mediated lipid peroxidation of micelles and membranes in aqueous suspensions was induced by hypochlorite, the chain initiation being the decomposition of hydroperoxides by hypochlorite. It was suppressed efficiently by ebselen which reduced hydroperoxides and by alpha-tocopherol, which broke chain propagation, but less effectively by hydrophilic antioxidants present in the aqueous phase. Cysteine suppressed the oxidation, but it was poorer antioxidant than alpha-tocopherol. Ascorbate also exerted moderate antioxidant capacity, but it acted as a synergist with alpha-tocopherol. Taken together, it was suggested that the primary target of hypochlorite must be sulfhydryl and amino groups in proteins and that the lipid peroxidation may proceed as the secondary reaction, which is induced by radicals generated from sulfenyl chlorides and chloramines.  相似文献   

13.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

14.
A novel approach based on a plasma membrane permeability-disturbing agent was proposed as an antisense oligonucleotide delivery system. AMA, a derivative of the polyene antibiotic amphotericin B, formed a stable complex when mixed with phosphodiester oligodeoxynucleotides and enhanced the intracellular uptake of a 5' fluoresceinated anti-mdr1 20-mer into NIH-MDR-G185 cells. The nonlabeled phosphorothioate form of the oligodeoxynucleotide, complexed to AMA, inhibited P-glycoprotein expression with better efficiency and less nonspecific effects than when vectorized by Lipofectin. AMA may thus be a good agent for antisense strategy.  相似文献   

15.
Exposure of red blood cells to oxygen radicals can induce hemoglobin damage and stimulate protein degradation, lipid peroxidation, and hemolysis. To determine if these events are linked, rabbit erythrocytes were incubated at 37 degrees C with various oxygen radical-generating systems and antioxidants. Protein degradation, measured by the production of free alanine, increased more than 11-fold in response to xanthine (X) + xanthine oxidase (XO). A similar increase in proteolysis occurred when the cells were incubated with acetaldehyde plus XO, with ascorbic acid plus iron (Asc + Fe), or with hydrogen peroxide (H2O2) alone. Upon addition of XO, increased proteolysis was evident within 5 min and was linear for up to 5 h. In contrast, lipid peroxidation, as shown by the production of malonyldialdehyde, conjugated dienes, or lipid hydroperoxides was observed only after 2 h of incubation with X + XO, acetaldehyde + XO, or H2O2. Ascorbate plus Fe2+ induced both protein degradation and lipid peroxidation; however, the addition of various antioxidants (urate, xanthine, glucose, or butylated hydroxytoluene) decreased lipid peroxidation without affecting proteolysis. Thus, these processes seem to occur by distinct mechanisms. Furthermore, at low concentrations of XO, protein degradation was clearly increased in the absence of detectable lipid peroxidation products. Hemolysis occurred only in a small number of cells (9%) and followed the appearance of lipid peroxidation products. Thus, an important response of red cells to oxygen radicals is rapid degradation of damaged cell proteins. Increased proteolysis seems to occur independently of membrane damage and to be a more sensitive indicator of cell exposure to oxygen radicals than is lipid peroxidation.  相似文献   

16.
Cell culture, tissue chemistry and flow cytometry were used to determine whether antisense bcl-2 oligodeoxynucleotides enhanced the sensitivity of leukemia cells to arsenic trioxide. A combination of arsenic trioxide with antisense bcl-2 oligodeoxynucleotides inhibited cell growth, induced apoptosis and induced bcl-2 protein expression in K562 and NB4 leukemic cells more significantly than either arsenic trioxide or the oligodeoxynucleotides on their own (P<0.01). Thus, bcl-2 antisense oligodeoxynucleotides increase the sensitivity of leukemic cells to arsenic trioxide. Combined use of the two agents could be a novel and attractive strategy in leukemia treatment.  相似文献   

17.
The peroxidative oxidation of extracted rat liver microsomal lipid, assayed as malondialdehyde production, can be promoted by milk xanthine oxidase in the presence of 0.2 mM FeCl3 and 0.1 mM EDTA. The reaction is inhibited by the superoxide dismutase activity of erythrocuprein. The reaction is also inhibited by 1,3-diphenylisobenzofuran, which reacts with singlet oxygen to yield dibenzoylbenzene. During inhibition of the lipid peroxidation reaction by 1,3-diphenylisobenzofuran, o-dibenzoylbenzene was produced. The rate of superoxide production by xanthine oxidase was not affected by 1,3-diphenylisobenzofuran. Lipid peroxidation promoted by ascorbic acid is not inhibited by either erythrocuprein or 1,3-diphenylisobenzofuran. Therefore it is suggested that the peroxidative oxidation of unsaturated lipid promoted by xanthine oxidase involves the formation of singlet oxygen from superoxide, and the singlet oxygen reacts with the lipid to form fatty acid hydroperoxides.  相似文献   

18.
During pregnancy placenta is the most significant source of lipid hydroperoxides and other reactive oxygen species (ROS). The increased production of lipid peroxides and other ROS is often linked to pre-eclampsia. It is already proved that placental endoplasmic reticulum may be an important place of lipid peroxides and superoxide radical production. In the present study we revealed that NADPH- and iron-dependent lipid peroxidation in human placental microsomes (HPM) inhibit placental aromatase--a key enzyme of estrogen biosynthesis in human placenta. We showed that significant inhibition of this enzyme is caused by small lipid peroxidation (TBARS (thiobarbituric acid-reactive substances)<4nmol/mg microsomal protein (m.p.)). More intensive lipid peroxidation (TBARS>9nmol/mg microsomal protein) diminishes aromatase activity to value being less than 5% of initial value. NADPH- and iron-dependent lipid peroxidation also causes disappearance of cytochrome P450 parallel to observed aromatase activity inhibition. EDTA, alpha-tocopherol, MgCl(2) and superoxide dismutase (SOD) prevent aromatase activity inhibition and cytochrome P450(AROM) degradation. Mannitol and catalase have not effect on TBARS synthesis, aromatase activity and cytochrome P450 degradation. In view of the above we postulate that the inhibition of aromatase activity observed is mainly a consequence of cytochrome P450(AROM) degradation induced by lipid radicals. The role of hydroxyl radical in cytochrome P450 degradation is negligible in our experimental conditions. The results presented here also suggest that the inhibition of aromatase activity can also take place in placenta at in vivo conditions.  相似文献   

19.
The antioxidant action of carotenoids is believed to involve quenching of singlet oxygen and scavenging of reactive oxygen radicals. However, the exact mechanism by which carotenoids protect cells against oxidative damage, particularly in the presence of other antioxidants, remains to be elucidated. This study was carried out to examine the ability of exogenous zeaxanthin alone and in combination with vitamin E or C, to protect cultured human retinal pigment epithelium cells against oxidative stress. The survival of ARPE-19 cells, subjected to merocyanine 540-mediated photodynamic action, was determined by the MTT test and the content of lipid hydroperoxides in photosensitized cells was analyzed by HPLC with electrochemical detection. We found that zeaxanthin-supplemented cells, in the presence of either alpha-tocopherol or ascorbic acid, were significantly more resistant to photoinduced oxidative stress. Cells with added antioxidants exhibited increased viability and accumulated less lipid hydroperoxides than cells without the antioxidant supplementation. Such a synergistic action of zeaxanthin and vitamin E or C indicates the importance of the antioxidant interaction in efficient protection of cell membranes against oxidative damage induced by photosensitized reactions.  相似文献   

20.
We have previously described the characterization of a 20mer phosphorothioate oligodeoxynucleotide (ISIS 4189) which inhibits murine protein kinase C-alpha (PKC-alpha) gene expression, both in vitro and in vivo. In an effort to increase the antisense activity of this oligonucleotide, 2'-O-propyl modifications have been incorporated into the 5'- and 3'-ends of the oligonucleotide, with the eight central bases left as phosphorothioate oligodeoxynucleotides. Hybridization analysis demonstrated that these modifications increased affinity by approximately 8 and 6 degrees C per oligonucleotide for the phosphodiester (ISIS 7815) and phosphorothioate (ISIS 7817) respectively when hybridized to an RNA complement. In addition, 2'-O-propyl incorporation greatly enhanced the nuclease resistance of the oligonucleotides to snake venom phosphodiesterase or intracellular nucleases in vivo. The increase in affinity and nuclease stability of ISIS 7817 resulted in a 5-fold increase in the ability of the oligonucleotide to inhibit PKC-alpha gene expression in murine C127 cells, as compared with the parent phosphorothioate oligodeoxynucleotide. Thus an RNase H-dependent phosphorothioate oligodeoxynucleotide can be modified as a 2'-O-propyl 'chimeric' oligonucleotide to provide a significant increase in antisense activity in cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号