首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During legume seed development the epidermis of the embryos differentiates into a transfer cell layer which mediates nutrient uptake during the storage phase. This specific function of the epidermal cells is acquired at the onset of embryo maturation. We investigated this process in the pea seed mutant E2748. The epidermal cells of the mutant embryo, instead of turning into transfer cells, enlarge considerably and become vacuolated and tightly associated with adjacent seed tissues. Expression of a sucrose transporter gene that is upregulated in wild-type transfer cells decreases in the mutant and changes its spatial pattern. This indicates that the outermost cell layer of mutant cotyledons cannot acquire transfer cell morphology but loses epidermal cell identity and does not function as a sucrose uptake system. Seed coat growth as well as composition, concentration and dynamics of sugars within the endospermal vacuole are unchanged. The loss of epidermal identity has severe consequences for further embryo development and is followed by disruption of the symplast within the parenchyma, the breach of the developmental gradient, lower sucrose and starch levels and initiation of callus-like growth. It is concluded that the E2748 gene controls differentiation of the cotyledonary epidermis into transfer cells and thus is required for the regional specialisation with a function in embryo nutrition.  相似文献   

2.
3.
The composition of the translocates reaching the seeds of pea plants having various nitrogen (N) nutrition regimes was investigated under field situations. Sucrose flow in the phloem sap increased with the node number, but was not significantly different between N nutrition levels. Because N deficiency reduced the number of flowering nodes and the number of seeds per pod, the sucrose flow bleeding from cut peduncles was divided by the number of seeds to give the amount of assimilates available per seed. The sucrose concentration in phloem sap supplied to seeds at the upper nodes was higher than that at the lower nodes. The flow of sucrose delivered to the seeds during the cell division period was correlated with seed growth potential. Seeds from the more N-stressed plants had both the highest seed growth rate and received a higher sucrose flux per seed during the cell division period. As seed growth rate is highly correlated with the number of cotyledonary cells produced during the cell division period, sucrose flow in phloem sap is proposed to be an important determinant of mitotic activity in seed embryos. The carbon (C)/N ratio of the flow of translocates towards seeds was higher under conditions of N-deficiency than with optimal N nutrition, indicating that N flux towards seeds, in itself, is not the main determinant of seed growth potential.  相似文献   

4.
5.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   

6.
During the storage phase, cotyledons of developing pea seeds are nourished by nutrients released to the seed apoplasm by their maternal seed coats. Sucrose is transported into pea cotyledons by sucrose/H+ symport mediated by PsSUT1 and possibly other sucrose symporters. PsSUT1 is principally localised to plasma membranes of cotyledon epidermal and subepidermal transfer cells abutting the seed coat. We tested the hypothesis that endogenous sucrose/H+ symporter(s) regulate sucrose import into developing pea cotyledons. This was done by supplementing their transport activity with a potato sucrose symporter (StSUT1), selectively expressed in cotyledon storage parenchyma cells under control of a vicilin promoter. In segregating transgenic lines, enhanced [(14)C]sucrose influx into cotyledons above wild-type levels was found to be dependent on StSUT1 expression. The transgene significantly increased (approximately 2-fold) transport activity of cotyledon storage parenchyma tissues where it was selectively expressed. In contrast, sucrose influx into whole cotyledons through the endogenous epidermal transfer cell pathway was increased by only 23% in cotyledons expressing the transgene. A similar response was found for rates of biomass gain by intact cotyledons and by excised cotyledons cultured on a sucrose medium. These observations demonstrate that transport activities of sucrose symporters influence cotyledon growth rates. The attenuated effect of StSUT1 overexpression on sucrose and dry matter fluxes by whole cotyledons is consistent with a large proportion of sucrose being taken up at the cotyledonary surface. This indicates that the cellular location of sucrose transporter activity plays a key role in determining rates of sucrose import into cotyledons.  相似文献   

7.
8.
Developing plant embryos depend on nutrition from maternal tissues via the seed coat and endosperm, but the mechanisms that supply nutrients to plant embryos have remained elusive. Sucrose, the major transport form of carbohydrate in plants, is delivered via the phloem to the maternal seed coat and then secreted from the seed coat to feed the embryo. Here, we show that seed filling in Arabidopsis thaliana requires the three sucrose transporters SWEET11, 12, and 15. SWEET11, 12, and 15 exhibit specific spatiotemporal expression patterns in developing seeds, but only a sweet11;12;15 triple mutant showed severe seed defects, which include retarded embryo development, reduced seed weight, and reduced starch and lipid content, causing a “wrinkled” seed phenotype. In sweet11;12;15 triple mutants, starch accumulated in the seed coat but not the embryo, implicating SWEET-mediated sucrose efflux in the transfer of sugars from seed coat to embryo. This cascade of sequentially expressed SWEETs provides the feeding pathway for the plant embryo, an important feature for yield potential.  相似文献   

9.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression constructs. We focused our analysis on 0 to 3 days after anthesis (DAA) for early fiber development and 25 DAA, when the fiber and seed are maximal in size. Suppression of Sus activity by 70% or more in the ovule epidermis led to a fiberless phenotype. The fiber initials in those ovules were fewer and shrunken or collapsed. The level of Sus suppression correlated strongly with the degree of inhibition of fiber initiation and elongation, probably as a result of the reduction of hexoses. By 25 DAA, a portion of the seeds in the fruit showed Sus suppression only in the seed coat fibers and transfer cells but not in the endosperm and embryo. These transgenic seeds were identical to wild-type seeds except for much reduced fiber growth. However, the remaining seeds in the fruit showed Sus suppression both in the seed coat and in the endosperm and embryo. These seeds were shrunken with loss of the transfer cells and were <5% of wild-type seed weight. These results demonstrate that Sus plays a rate-limiting role in the initiation and elongation of the single-celled fibers. These analyses also show that suppression of Sus only in the maternal seed tissue represses fiber development without affecting embryo development and seed size. Additional suppression in the endosperm and embryo inhibits their own development, which blocks the formation of adjacent seed coat transfer cells and arrests seed development entirely.  相似文献   

10.
Dry seeds of Cuscuta pedicellata have a deeply pitted surface due to invaginated epidermal cell walls. After water uptake these walls bulge outwards and the seed surface becomes papillose. The seed coat consists of an epidermis, two palissade cell layers, and a multiple layer of parenchyma cells. The epidermis contains starch and mucilage, the parenchyma cells are compressed but some contain starch. The endosperm consists of starch–filled cells, but has a peripheral aleuron layer. The endosperm cell walls are gelatinous. The variable structure of the seed coat epidermis is believed to function in wind dispersal and rapid water uptake. Seed dormancy is common in the genus, but does apparently not occur in C. pedicellata.  相似文献   

11.
We previously reported on Vicia narbonensis seeds with largely decreased alpha- D-glucose-1-phosphate adenyltransferase (AGP; EC 2.7.7.27) due to antisense inhibition [H. Weber et al. (2000) Plant J 24:33-43]. In an extended biochemical analysis we show here that in transgenic seeds both AGP activity and ADP-glucose levels were strongly decreased but starch was only moderately reduced and contained less amylose. The flux control coefficient of AGP to starch accumulation was as low as 0.08, i.e. AGP exerts low control on starch biosynthesis in Vicia seeds. Mature cotyledons of antisense seeds had increased contents of lipids, nitrogen and sulfur. The protein content was higher due, in particular, to increased sulfur-rich albumins. Globulin fractions of storage proteins had a lower ratio of legumin to vicilin. Isolated cotyledons partitioned less [14C]sucrose into starch and more into soluble sugars with no change in the protein fraction. Respiration of isolated cotyledons and activities of the major glycolytic and carbohydrate-metabolizing enzymes were not affected. Sucrose and the hexose-phosphate pool were increased but UDP-glucose, 3-phosphoglyceric acid, phospho enolpyruvate, pyruvate, ATP and ADP were unchanged or even lower, indicating that carbon partitioning changed from starch to sucrose without affecting the glycolytic and respiratory pathways. Soluble compounds were increased but osmolality remained unchanged, indicating compensatory water influx resulting in higher water contents. Developmental patterns of water and nitrogen accumulation suggest a coupled uptake of amino acids and water into cotyledons. We conclude that, due to higher water uptake, transgenic cotyledons take up more amino acids, which become available for protein biosynthesis leading to a higher protein content. Obviously, a substantial part of amino acid uptake into Vicia seeds occurs passively and is osmotically controlled and driven by water influx.  相似文献   

12.
Precocious Germination during In Vitro Growth of Soybean Seeds   总被引:3,自引:3,他引:0       下载免费PDF全文
Immature Glycine max (L.) Merrill seeds were grown and matured in liquid medium at 25°C under fluorescent light. In standard medium containing minerals, 146 millimolar sucrose and 62.5 millimolar glutamine (osmolality 0.24), precocious germination seldom occurred with a starting seed size of less than 300 milligrams fresh weight. Frequency of precocious germination increased with increased starting seed size. Sucrose concentration strongly affected precocious germination while glutamine concentration had no effect. Starting with 300 to 350 milligrams fresh weight seeds, treatments which reduced the sucrose concentration or lowered the osmolality of the culture medium stimulated precocious germination, and increased the fresh weight growth but not the dry weight growth of seeds. Increasing the osmolality to 0.38 with sucrose or mannitol prevented precocious germination without reducing dry weight accumulation in seeds. In medium with initially low osmolality, precocious germination was inhibited by addition of 1 to 100 micromolar abscisic acid to the medium without a reduction in seed growth. During growth and maturation of large soybean seeds in vitro, precocious germination and other abnormal tissue growth can be prevented by high sucrose or mannitol concentrations in the medium or by addition of abscisic acid.  相似文献   

13.
Carbohydrates and carbohydrate enzymes in developing cotton ovules   总被引:2,自引:0,他引:2  
Patterns of carbohydrates and carbohydrate enzymes were investigated in developing cotton ovules to establish which of these might be related to sink strength in developing bolls. Enzymatic analysis of extracted tissue indicated that beginning 1 week following anthesis, immature cotton seeds (Gossypium hirsutum L. cv. Coker 100A glandless) accumulated starch in the tissues which surround the embryo. Starting at 15 days post anthesis (DPA), this starch was depleted and starch simultaneously appeared in the embryo. Sucrose entering the tissues surrounding the embryo was rapidly degraded, apparently by sucrose synthase; the free hexose content of these tissues reached a peak at about 20 DPA. During the first few weeks of development these tissues contained substantial amounts of hexose but little sucrose; the reverse was true for cotton embryos. Embryo sucrose content rose sharply from the end of the first week until about 20 DPA; it then remained roughly constant during seed maturation. Galactinol synthase (EC 2.4.1.x) appeared in the embryos approximately 25 days after flowering. Subsequently, starch disappeared and the galactosides raffinose and stachyose appeared in the embryo. Except near maturity, sucrose synthase (EC 2.4.1.13) activity in the embryos predominated over that of both sucrose phosphate synthase (EC 2.4.1.14) and acid invertase (EC 3.2.1.26). Activities of the latter enzymes increased during the final stages of embryo maturation. The ratio of sucrose synthase to sucrose phosphate synthase was found to be high in young cotton embryos but the ratio reversed about 45 DPA, when developing ovules cease being assimilate sinks. Insoluble acid invertase was present in developing cotton embryos, but at very low activities; soluble acid invertase was present at significant activities only in nearly mature embryos. From these data it appears that sucrose synthase plays an important role in young cotton ovule carbohydrate partitioning and that sucrose phosphate synthase and the galactoside synthesizing enzymes assume the dominant roles in carbohydrate partitioning in nearly mature cotton seeds. Starch was found to be an important carbohydrate intermediate during the middle stages of cotton ovule development and raffinose and stachyose were found to be important carbohydrate pools in mature cotton seeds.  相似文献   

14.
Variations in carbohydrates and proteins were monitored during avocado (Persea americana Mill.) zygotic embryo development and correlated with growth parameters in order to define specific markers characterizing distinct embryogenic phases. Hexose (glucose and fructose) levels were initially high and declined as embryo development advanced reaching the lowest levels in completely mature embryos. Sucrose and starch evolution showed an opposite trend with a progressive increase during embryo growth. The beginning of the maturation phase could be identified by a switch in the carbohydrate status from high hexose/sucrose ratio to low hexose/sucrose ratio. Storage protein accumulation began at early cotyledonary stages (7–8 mm), increasing significantly in the maturation phase where they represented 83% of total proteins. Mature embryos (38–40 mm) contained albumins, globulins and glutelins, albumins being the predominant and most heterogeneous fraction. Storage protein accumulation occurred in a sequential and specific way suggesting a possible role as indicators of embryo development. The complete maturation stage could be characterized by the synthesis and accumulation of a 49 kDa albumin.  相似文献   

15.
Regulation of starch accumulation in yellow (Lupinus luteus L.), white (L. albus L.), and Andean lupin (L. mutabilis Sweet) developing and germinating seeds was investigated. Research was conducted on cotyledons isolated from developing seeds as well as on organs of germinating seeds, that is, isolated embryo axes, excised cotyledons, and seedling axes and cotyledons. All organs were cultured in vitro for 96 h in different carbon (60 mM sucrose) and nitrogen (35 mM asparagine or 35 mM nitrate) conditions. Ultrastructure observation showed one common pattern of changes in the number and size of starch granules caused by sucrose, asparagine, and nitrate in both developing and germinating seeds. Sucrose increased the number and size of starch granules. Asparagine additionally increased starch accumulation (irrespective of sucrose nutrition) but nitrate had no effect on starch accumulation. Asparagine treatment resulted in a significant decrease in soluble sugar level in all organs of germinating lupin seeds of the three species investigated. The above-mentioned changes were most clearly visible in white lupin organs. In white lupin, starch granules were visible even in cells of sucrose-starved isolated embryo axes where advanced autophagy occurs. The importance of asparagine-increased starch content in the creation of a strong source–sink gradient in developing and germinating lupin seeds is discussed.  相似文献   

16.
This work aimed at the assessment of the metabolism of carbohydrate during the development of the seeds of Brazilian rubber trees. The enzymatic activity of the acid invertase, neutral invertase and sucrose synthase (SuSy) and the levels of total soluble sugars (TSS), reducing sugars (RS) and sucrose were evaluated separately in each part of the fruit and seed—pericarp, seed coat, embryo and endosperm—on different days after the pollination (DAP). Based on the results obtained in this study, it is possible to conclude that in the beginning of the development of the rubber tree seeds, until 95 DAP, the endosperm presents high concentration of RS and low concentration of sucrose. After this period, the endosperm of the seed initiates starch accumulation and the concentration of RS decreases followed by the increase in the concentration of sucrose, presenting, after 120 DAP, an inversion of concentration of these two sugars. In the embryo, the levels of TSS, RS and sucrose show significant increase with the progress of the seed development. In the endosperm, the transition of the division phase and cell expansion for the storage of reserve material seem to occur around 120 DAP and is to be controlled mainly by the enzymes acid invertase and SuSy, while in the embryo, such transition seems to occur around 135 DAP and is to be controlled mainly by the enzymes acid and neutral invertases.  相似文献   

17.
Transgenic potato ( Solanum tuberosum cv. Prairie) lines were produced over-expressing a sucrose non-fermenting-1-related protein kinase-1 gene ( SnRK1 ) under the control of a patatin (tuber-specific) promoter. SnRK1 activity in the tubers of three independent transgenic lines was increased by 55%−167% compared with that in the wild-type. Glucose levels were decreased, at 17%−56% of the levels of the wild-type, and the starch content showed an increase of 23%−30%. Sucrose and fructose levels in the tubers of the transgenic plants did not show a significant change. Northern analyses of genes encoding sucrose synthase and ADP-glucose pyrophosphorylase, two key enzymes involved in the biosynthetic pathway from sucrose to starch, showed that the expression of both was increased in tubers of the transgenic lines compared with the wild-type. In contrast, the expression of genes encoding two other enzymes of carbohydrate metabolism, α-amylase and sucrose phosphate synthase, showed no change. The activity of sucrose synthase and ADP-glucose pyrophosphorylase was also increased, by approximately 20%–60% and three- to five-fold, respectively, whereas the activity of hexokinase was unchanged. The results are consistent with a role for SnRK1 in regulating carbon flux through the storage pathway to starch biosynthesis. They emphasize the importance of SnRK1 in the regulation of carbohydrate metabolism and resource partitioning, and indicate a specific role for SnRK1 in the control of starch accumulation in potato tubers.  相似文献   

18.
19.
In a close parallel to the developmental pattern of α-amylase activity, a rapid increase of maltase activity occurred in the endosperm tissue of germinating rice seeds after about 4 days of the seed imbibition. The overall pattern of the 2 hydrolytic enzyme activities strongly suggest that amylolytic breakdown is the major metabolic route of starch utilization in the germinating rice seeds. Results of the chemical analyses of sugar constituents as well as the measurements of sucrose synthetase activity show that the scutellum is the site of sucrose synthesis in the germinating rice seeds. It is thus supported that glucose derived from the reserve starch in endosperm is transported to scutellum, where it is converted to sucrose. Sucrose is further mobilized to the growing tissues, shoots and roots.  相似文献   

20.
Sucrose plays an important role in several cellular processes since it is a general source of metabolic energy, serves as a precursor for starch and cellulose synthesis, and is a metabolic starting point for carboxylate- and amino acid synthesis. While plant vacuole is the main cellular storage pool, where sucrose accumulates to high concentrations, only a small number of vacuolar sugar transporters have been identified and characterized to date. We initially identified a vacuolar sucrose transporter (NtSUT4) from tobacco BY-2 cells and established transgenic tobacco BY-2 cell lines that overexpress NtSUT4-GFP (BY-SUTG cells). Using a model system for synchronous cell elongation in miniprotoplasts (evacuolated cells) prepared from tobacco BY-2 cells, we found that NtSUT4-GFP overexpression inhibited cell growth towards the cell major axis. Moreover, under the same conditions, we found that the cell walls were well stained by calcofluor in BY-SUTG cells than in wild type BY-2 cells. These results suggest that NtSUT4 is involved in cell shape via sucrose homeostasis in plant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号