首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Twisted fibrous extracellular matrices observed in section often show alternating clear and dark bands. Three different methods of observation (high voltage electron microscopy, shadowing of thin sections and stereoscopic views) show the presence of ruffling effects and relief at the surface of crab cuticle sections. These effects appear uneven on both sides of the sections. As shown in a series of diagrams, the localization of the microtomy artefact is a function of the orientation of the cuticle laminae relative to the knife direction, and this creates variations in the position and the extent of the microtomy effect over each lamina. Confirmation of this analysis is obtained in a particular geometrical situation which appears in sections of tubercles in the crab cuticle where the twisted plywood stratification is deformed into a dome. By shadowing thin sections, perpendicular to the tubercle axis, nested crescents are visualized on the surface of the samples. All observations demonstrate that the clear and dark lamellae are due to a microtomy artefact which is a three-dimensional process, and not, as usually considered, due to chemical or physical variations in the structure.  相似文献   

2.
The microfibrils of connective tissue: I. Ultrastructure   总被引:2,自引:0,他引:2  
The ultrastructure of connective tissue microfibrils was examined in two sites: the ciliary zonule of the eye and the foot pad, in 20-day-old mice perfused with glutaraldehyde. The microfibrils were classified into two categories, referred to as typical and atypical. Typical microfibrils predominate in both sites; they are unbranched, straight or gently curving, tubular structures of indefinite length with an overall diameter of 12.8 +/- 1.7 nm in the zonule and 13.8 +/- 2.8 nm in the foot pad. They are composed of two parts: tubule proper and surface band. The tubule is 7- to 10-nm wide and characterized in cross section by an approximately pentagonal wall and an electron-lucent lumen containing a 1- to 2-nm bead referred to as a spherule. When longitudinal sections of microfibrils are examined at high magnification, the wall of the tubule does not appear as a continuous line but as a series of successive dots. The interpretation of these findings is that the tubule is composed of successive annular segments with an approximately pentagonal outline. The surface band is a 3-nm-wide, ribbon-like structure wrapped around the tubule. The band has dense borders called tracks. Along the tracks, densely stained, 4.6-nm-long "spikes" are attached at 4.0-nm intervals. The wrapping of the bands is somewhat irregular. They may be in a transverse position across single or several microfibrils, in which case each band might constitute a distinct belt; more frequently, the bands are oblique and appear to form a continuous helix. It is proposed that surface bands play a role in holding together the juxtaposed segments making up a tubule. A model has been constructed to represent the association of tubule and band into a typical microfibril. Atypical microfibrils, which are more common in foot pad than in ciliary zonule, appear wavy, lack a definite tubule, and are characterized by distorted, irregular surface bands. They are attributed to proteolysis of typical microfibrils.  相似文献   

3.
Pore canal shape related to molecular architecture of arthropod cuticle   总被引:1,自引:0,他引:1  
The rotating structure of pore canals is interpreted in terms of the Bouligand model of rotating layers of chitin-protein microfibrils, and the daily growth layer system in insects. Crustacean and arachnid examples are also used. Pore canals are flattened into ribbons by neighbouring microfibrils. The ribbons run straight when traversing layers with preferred microfibril orientation, but rotate in phase through lamellate layers in which the layers of microfibrils also rotate. Oblique sections of models show that the parabolic artefact derived from microfibrils, and the parabolic arcs of pore canals seen as crescents in section, only superimpose, as they do in actual sections, when both systems have the same sense of rotation. Pore canal rotation may be determined by chitin-protein architecture.  相似文献   

4.
The ultrastructure of isolated fibrils of Chondrosia reniformis sponge collagen was investigated by collecting characteristic data, such as fibril thickness, width, D-band periodicity, and height modulation, using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Therefore an adapted pre-processing of the insoluble collagen into homogeneous suspensions using neutral buffer solutions was essential, and several purification steps have been developed. Fourier transform infrared reflection-absorption spectroscopy (FT-IRAS) of the purified sponge collagen showed remarkable analogy of peak positions and intensities with the spectra of fibrillar calf skin type I collagen, despite the diverse phylogenetic and evolutionary origin. The sponge collagen's morphology is compared with that of other fibrillar collagens, and the typical banding of the separated single fibrils is discussed by comparison of topographical data obtained using AFM and corresponding TEM investigations using common staining methods. As the TEM images of the negatively stained fibrils showed alternating dark and light bands, AFM revealed a characteristic periodicity of protrusions (overlap zones) followed by two equal interband regions (gap zones). AFM and TEM results were correlated and multiperiodicity in Chondrosia collagen's banding is demonstrated. The periodic dark bands observed in TEM images correspond directly to the periodic protrusions seen by AFM. As a result, we provide an improved, updated model of the collagen's structure and organization.  相似文献   

5.
The fine structure of lignin deposition was examined in developing secondary walls of wound vessel members in Coleus. KMnO4, which was used as the fixative, selectively reacts with the lignin component of the cell wall and thus can be used as a highly sensitive electron stain to follow the course of lignification during secondary wall deposition. Lignin was first detected as conspicuuos electron-opaque granules in the primary wall in the region where the secondary wall thickening arises and as fine granular striations extending into the very young secondary wall. As the secondary wall develops lignification becomes progressively more extensive. In cross sections the lignified secondary wall appears as concentric, fine granular striations; in tangent al or oblique sections it is seen as delicate, beaded fibrils paralleling the long axis of the thickening. High magnification of tangential or oblique sections shows that the fibrillar appearance is due to the presence of alternating light and dark layers each approximately 25-35 A wide. It is assumed that the light layers are the cellulose microfibrils and the dark regions contain lignin which fills the space between the microfibrils. KMnO4, by selectively reacting with lignin, thus negatively stains the cellulose microfibrils revealing their orientation and dimensions.  相似文献   

6.
J G Vacca 《Tissue & cell》1973,5(2):185-197
Selected electron micrographs of transversely, obliquely and longitudinally sectioned microfibrils of transversely sectioned porcupine quill tip are shown to possess 2-fold radial, 3-fold radial and 5-fold polygonal rotational symmetries. These symmetries are verified with a rotation technique, and are similar to edge, corner and face projections of a pentagonal dodecahedron. The a-keratin microfibril is therefore suggested to be composed of a linear arrangement of morphologically identical microfibrillar subunits which approximate the shape of a pentagonal dodecahedron. The various line patterns present in electron micrographs of microfibrils are explained by different orientations of this three-dimensional shape within the thickness of the section. Previous electron microscopic models for the structure of the microfibrils are incompatible with these results. The image averaging methods used to arrive at these earlier models are discussed, and are thought to yield results which must differ from the demonstrated rotational symmetries.  相似文献   

7.
Elastic tissue, when viewed in the electron microscope, consists of an amorphous component that is immunoreactive with anti-tropoelastin (TE) antibodies and microfibrils, that react with monospecific antibodies against a 31 kDa microfibrillar glycoprotein constituent, called MAGP. A detailed study of the tissue distribution of microfibrils and of the two elastic tissue antibodies has been carried out, using single and double-labeled immunogold techniques in high resolution electron microscopy. Microfibrils similar in appearance to those associated with elastic tissue and immunoreactive with the anti-MAGP antibody, have been demonstrated in many tissues in the absence of amorphous elastic tissue. In the majority of these tissues, specific anti-TE antibody localization was demonstrated in the immediate vicinity of the microfibrils, or alternatively, the microfibrils were shown to be in direct continuity with microfibrils of similar morphology, which were associated with material immunoreactive with anti-TE antibody. The diameter of these microfibrils varied between 8 nm and 16 nm. They were unbranched structures of indefinite length, with a tubular profile on cross section and periodic staining in longitudinal section. In some tissues, notably in the ciliary zonule and in the mesangial region of the renal glomerulus, microfibrils of similar morphology were demonstrated which were immunoreactive with anti-MAGP antibody, but which were unrelated to amorphous elastic tissue and with which anti-TE antibody localization could not be demonstrated. The evidence available supports the conclusion that all these microfibrils are members of a single class of structures, which are widely distributed in the tissues and which are secreted by a range of cell types. Attention is directed to the close relationship between these microfibrils and the basement membrane of the glomerulus, of uterine smooth muscle, of the basal cells of the epidermis and of the reticulum cells of the spleen.  相似文献   

8.
Current models of the elastic properties and structural organization of fibrillin-containing microfibrils are based primarily on microscopic analyses of microfibrils liberated from connective tissues after digestion with crude collagenase. Results presented here demonstrate that this digestion resulted in the cleavage of fibrillin-1 and loss of specific immunoreactive epitopes. The proline-rich region and regions near the second 8-cysteine domain in fibrillin-1 were easily cleaved by crude collagenase. Other sites that may also be cleaved during microfibril digestion and extraction were identified. In contrast to collagenase-digested microfibrils, guanidine-extracted microfibrils contained all fibrillin-1 epitopes recognized by available antibodies. The ultrastructure of guanidine-extracted microfibrils differed markedly from that of collagenase-digested microfibrils. Fibrillin-1 filaments splayed out, extending beyond the width of the periodic globular beads. Both guanidine-extracted and collagenase-digested microfibrils were subjected to extensive digestion by crude collagenase. Collagenase digestion of guanidine-extracted microfibrils removed the outer filaments, revealing a core structure. In contrast to microfibrils extracted from tissues, cell culture microfibrils could be digested into short units containing just a few beads. These data suggest that additional cross-links stabilize the long beaded microfibrils in tissues. Based on the microfibril morphologies observed after these experiments, on the crude collagenase cleavage sites identified in fibrillin-1, and on known antibody binding sites in fibrillin-1, a model is proposed in which fibrillin-1 molecules are staggered in microfibrils. This model further suggests that the N-terminal half of fibrillin-1 is asymmetrically exposed in the outer filaments, whereas the C-terminal half of fibrillin-1 is present in the interior of the microfibril.  相似文献   

9.
Closterium acerosum (Schrank) Ehrenberg cells cultured on cycles of 16 h light and 8 h dark, undergo cell division synchronously in the dark period. After cell division, the symmetry of the daughter semicells is restored by controlled expansion, the time required for this restoration, 3.5–4 h, being relatively constant. The restoration of the symmetry is achieved by highly oriented surface expansion occurring along the entire length of the new semicell. During early semicell expansion, for about 2.5 h, microfibrils are deposited parallel to one another and transversely to the cell axis on the inner surface of the new wall. Wall microtubules running parallel to the transversely oriented microfibrils are observed during this period. About 2.5 h after septum formation, preceding the cessation of cell elongation, bundles of 7–11 microfibrils running in various directions begin to overlay the parallel-arranged microfibrils already deposited. In the fully elongated cells, no wall microtubules are observed.  相似文献   

10.
李奎  余其兴  赵则春  余梅  周荣家 《遗传》1996,18(4):32-35
在黄鳝二价染色体上, 运用地高辛配基标记的随机引物原位DNA合成技术诱导出了明暗相间、基本稳定且类似于R带的带状结构。本文对该结果进行了较详细的分析和讨论。 Abstract:The dark bands alternating with light bands,relatively stable and R-band-like structure was showed on the pachytene bivalents of Rics-field eel(Monopterus albus Zuiew)by using the random-primed in situ digoxigenin-labelled DNA synthesis technique,and the results were analysed and discussed in detail.  相似文献   

11.
The brown alga Sphacelaria rigidula Kützing synthesizes cellulose microfibrils as determined by CBH I-gold labeling. The cellulose microfibrils are thin, ribbon-like structures with a uniform thickness of about 2.6 nm and a variable width in the range of 2.6-30 nm. Some striations appear along the longitudinal axis of the microfibrils. The developed cell wall in Sphacelaria is composed of three to four layers, and cellulose micro-fibrils are deposited in the third layer from the outside of the wall. A freeze fracture investigation of this alga revealed cellulose-synthesizing terminal complexes (TCs), which are associated with the tip of microfibril impressions in the plasmatic fracture face of the plasma membrane. The TCs consist of subunits arranged in a single linear row. The average diameter of the sub-units is about 6 nm, and the intervals between the neighboring subunits, about 9 nm, are relatively constant. The number of subunits constituting the TC varies between 10 and 100, so that the length of the whole TC varies widely. A model that has been proposed for the assembly of thin, ribbon-like microfibrils was applied to microfibril assembly in Sphacelaria.  相似文献   

12.
《BBA》2020,1861(2):148138
An analysis of photosynthetic response on action of stressors is an important problem, which can be solved by experimental and theoretical methods, including mathematical modeling of photosynthetic processes. The aim of our work was elaboration of a mathematical model, which simulated development of a nonphotochemical quenching under different light conditions. We analyzed two variants of the model: the first variant included a light-induced activation of the electron transport chain; in contrast, the second variant did not describe this activation. Both variants of the model described interactions between transitions from open reaction centers to closed ones (and vice versa) and development of the nonphotochemical quenching. Investigation of both variants of the model showed well qualitative and quantitative accordance between simulated and experimental changes in coefficient of the nophotochemical quenching which were analyzed under different light regimes: (i) the stepped increase of the light intensity without dark intervals between steps, (ii) periodical illuminations by different light intensities with constant durations which were separated by constant dark intervals, and (iii) periodical illuminations by the constant light intensity with different durations which were separated by different dark intervals. Thus, the model can be used for theoretical prediction of stress changes in photosynthesis under fluctuations in light intensity and search of optimal regimes of plant illumination.  相似文献   

13.
14.
Fibrillin microfibrils endow mammalian connective tissues with elasticity and are fundamental for the deposition of elastin. The microfibrils are 57nm periodic supramolecular protein polymers with a mass of 2.4MDa per repeat. The detailed structure and organisation of most matrix assemblies is poorly understood due to their large size and complexity and it has proved a major challenge to define their structural organisation. Therefore, we have used low dose electron microscopy and single particle image analysis to study the structure of fibrillin microfibrils. Three novel features were detected: a globular feature that bridges the "arm" region, a double band of density crossing the microfibril and stain penetrating holes present in the interbead region, possibly produced by the removal of microfibril associated proteins in the purification procedure. Fine filaments of approximately 2.4nm diameter are resolved in the interbead region, which correspond to the reported diameter of the fibrillin molecule. Comparison of the stain exclusion pattern of microfibrils with the theoretical stain exclusion pattern of fibrillin packing models indicates that the intramolecular pleating model, where each fibrillin molecule is pleated within one microfibril period allowing extensibility by unpleating, has the best fit to the data.  相似文献   

15.
Summary Skeletonema costatum consists of cells joined by open gutter-like connecting spines (strutted tubuli) which form from the margin of the valve face. The intercellular spaces occupied by tubuli are alternately enclosed by finely perforate bands of wall material. The intercellular bands are in the form of overlapping, open ended cylinders attached to the epitheca in the region of the cell girdle. A model is proposed for filament formation explaining the origin of alternating walled and unwalled intercellular spaces.  相似文献   

16.
The arrangement of cortical microtubules (MTs) during spore formation in Equisetum arvense was examined by immunofluorescence microscopy. The arrangement of MTs was observed to change during sporoderm formation. During exospore formation, the cortical MTs of the tapetum appeared along the tapetal plasma membrane that enclosed each developing spore cell. After exospore formation, the arrangement of the cortical MTs changed into one of separate bands of MTs arranged spirally (spiral bands of MTs). The spiral bands of MTs were superimposed on the developing elaters. This new pattern corresponded to the pattern of cellulose microfibrils deposited in the inner layer of the elater, suggesting that these spiral bands are involved in the deposition of the cellulose microfibrils in the elater. We conclude that the spiral bands of MTs are functionally equivalent to cortical MTs in secondary wall formation.  相似文献   

17.
The crystalline ultrastructure and orientation of cellulose microfibrils in the cell wall of Valonia macrophysa were investigated by means of high-resolution electron microscopy of ultrathin (approx. 28 nm) sections. With careful selection of imaging conditions, ultrastructural aspects of the cell wall that had remained unresolved in previous studies were worked out by direct imaging of crystal lattice of cellulose microfibrils. It was confirmed that each microfibril is a single crystal having a lateral dimension of 20·20 nm2, because lattice images of 0.39 nm resolution were clearly recorded with no major disruption in the whole area of the cross section of the microfibril. There was no evidence for the existence of 3.5-nm elementary fibrils which have been considered to be basic crystallographic and morphological units of cellulose in general. It was also confirmed that the axial directions (crystallographic fiber direction) of adjacent microfibrils in each single lamella of the cell wall are opposite to each other.  相似文献   

18.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

19.
A scanning pH-microprobe was used to study pH patterns near the surface of Chara corallina cells at various light intensities and during light-induced transitions from homogeneous pH distribution to alternating pH bands. In the irradiance (PAR) range 4-400 micromol quanta m(-2) s(-1), the sustained pH profiles consisted of alternating acid and alkaline bands with a characteristic length of 7-10 mm and pH shifts as large as 2-3 units. At lower irradiance, the number of alkaline bands decreased while the amplitude of remaining peaks stayed high. On cyclic changes in light intensity, a hysteresis of pH banding was observed: the pH bands tolerated low irradiance in weakening light, but higher irradiance was required for their emergence after dark adaptation of the cell. The pH profiles measured for different paths of electrode scanning suggest that the pH pattern at low light level represents patches coexisting with bands. The exposure of the cell to high-intensity light led to formation of radially symmetrical bands. Transformations of the pH pattern induced by lowering the light intensity were similar to those induced by transcellular electric current (1.5-3 microA). The data suggest that band formation at the plasmalemma of Chara cells proceeds through the initial appearance of multiple patches with a localized H(+)-transporting activity and subsequent spot rearrangements (fusion, deletions, widening), leading to establishment of alternating bands.  相似文献   

20.
We propose a new model for the alignment of fibrillin molecules within fibrillin microfibrils. Automated electron tomography was used to generate three-dimensional microfibril reconstructions to 18.6-A resolution, which revealed many new organizational details of untensioned microfibrils, including heart-shaped beads from which two arms emerge, and interbead diameter variation. Antibody epitope mapping of untensioned microfibrils revealed the juxtaposition of epitopes at the COOH terminus and near the proline-rich region, and of two internal epitopes that would be 42-nm apart in unfolded molecules, which infers intramolecular folding. Colloidal gold binds microfibrils in the absence of antibody. Comparison of colloidal gold and antibody binding sites in untensioned microfibrils and those extended in vitro, and immunofluorescence studies of fibrillin deposition in cell layers, indicate conformation changes and intramolecular folding. Mass mapping shows that, in solution, microfibrils with periodicities of <70 and >140 nm are stable, but periodicities of approximately 100 nm are rare. Microfibrils comprise two in-register filaments with a longitudinal symmetry axis, with eight fibrillin molecules in cross section. We present a model of fibrillin alignment that fits all the data and indicates that microfibril extensibility follows conformation-dependent maturation from an initial head-to-tail alignment to a stable approximately one-third staggered arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号