首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli.   总被引:10,自引:0,他引:10  
Mutants that at one time were thought to be specifically defective in taxis toward aspartate and related amino acids (tar mutants) or specifically defective in taxis toward serine and related amino acids (tar mutants) are now shown to be pleiotropic in their defects. The tar mutants also lack taxis toward maltose and away from Co2+ and Ni2+. The tsr mutants are altered in their response to a variety of repellents. Double mutants (tar tsr) fail in nearly all chemotactic responses. The tar and tsr mutants provide evidence for two complementary, converging pathways of information flow: certain chemoreceptors feed information into the tar pathway and others into the tsr pathway. The tar and tsr products have been shown to be two different sets of methylated proteins.  相似文献   

2.
Chemotaxis toward amino acids in Escherichia coli   总被引:30,自引:34,他引:30       下载免费PDF全文
Escherichia coli cells are shown to be attracted to the l-amino acids alanine, asparagine, aspartate, cysteine, glutamate, glycine, methionine, serine, and threonine, but not to arginine, cystine, glutamine, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, tyrosine, or valine. Bacteria grown in a proline-containing medium were, in addition, attracted to proline. Chemotaxis toward amino acids is shown to be mediated by at least two detection systems, the aspartate and serine chemoreceptors. The aspartate chemoreceptor was nonfunctional in the aspartate taxis mutant, which showed virtually no chemotaxis toward aspartate, glutamate, or methionine, and reduced taxis toward alanine, asparagine, cysteine, glycine, and serine. The serine chemoreceptor was nonfunctional in the serine taxis mutant, which was defective in taxis toward alanine, asparagine, cysteine, glycine, and serine, and which showed no chemotaxis toward threonine. Additional data concerning the specificities of the amino acid chemoreceptors with regard to amino acid analogues are also presented. Finally, two essentially nonoxidizable amino acid analogues, alpha-aminoisobutyrate and alpha-methylaspartate, are shown to be attractants for E. coli, demonstrating that extensive metabolism of attractants is not required for amino acid taxis.  相似文献   

3.
The tsr gene of Escherichia coli, located at approximately 99 min on the chromosomal map, encodes a methyl-accepting protein that serves as the chemoreceptor and signal transducer for chemotactic responses to serine and several repellents. To determine whether any other chemotaxis or motility genes were located in the tsr region, we constructed and characterized two lambda tsr transducing phages that each contain about 12 kilobases of chromosomal material adjacent to tsr. lambda tsr70 carries sequences from the promoter-proximal side of tsr; lambda tsr72 carries sequences from the promoter-distal side of tsr. Restriction maps of the bacterial inserts in these phages and Southern hybridization analyses of the bacterial chromosome indicated that the tsr gene is transcribed in the counterclockwise direction on the genetic map. Insert deletions were isolated in lambda tsr70 and transferred into the host chromosome to examine the null phenotype of tsr. All such strains exhibited wild-type swimming patterns and chemotactic responses to a variety of stimuli, but were specifically defective in serine taxis and other Tsr-mediated responses. In addition, UV programming experiments demonstrated that Tsr and several of its presumptive degradation products were the only bacterial proteins encoded by lambda tsr70 and lambda tsr72 that required host FlbB/FlaI function for expression. These findings indicate that there are probably no other chemotaxis-related genes in the tsr region. A series of tsr point mutations were isolated by propagating lambda tsr70 on a mutD host and used to construct a fine-structure map of the tsr locus. These mutations should prove valuable in exploring structure-function relationships in the Tsr transducer.  相似文献   

4.
Evolution of chemotactic-signal transducers in enteric bacteria.   总被引:7,自引:4,他引:3       下载免费PDF全文
M K Dahl  W Boos    M D Manson 《Journal of bacteriology》1989,171(5):2361-2371
The methyl-accepting chemotactic-signal transducers of the enteric bacteria are transmembrane proteins that consist of a periplasmic receptor domain and a cytoplasmic signaling domain. To study their evolution, transducer genes from Enterobacter aerogenes and Klebsiella pneumoniae were compared with transducer genes from Escherichia coli and Salmonella typhimurium. There are at least two functional transducer genes in the nonmotile species K. pneumoniae, one of which complements the defect in serine taxis of an E. coli tsr mutant. The tse (taxis to serine) gene of E. aerogenes also complements an E. coli tsr mutant; the tas (taxis to aspartate) gene of E. aerogenes complements the defect in aspartate taxis, but not the defect in maltose taxis, of an E. coli tar mutant. The sequence was determined for 5 kilobases of E. aerogenes DNA containing a 3' fragment of the cheA gene, cheW, tse, tas, and a 5' fragment of the cheR gene. The tse and tas genes are in one operon, unlike tsr and tar. The cytoplasmic domains of Tse and Tas are very similar to those of E. coli and S. typhimurium transducers. The periplasmic domain of Tse is homologous to that of Tsr, but Tas and Tar are much less similar in this region. However, several short sequences are conserved in the periplasmic domains of Tsr, Tar, Tse, and Tas but not of Tap and Trg, transducers that do not bind amino acids. These conserved regions include residues implicated in amino-acid binding.  相似文献   

5.
J. J. Vowels  J. H. Thomas 《Genetics》1994,138(2):303-316
Phenotypic analysis of the daf-11 and daf-21 mutants of Caenorhabditis elegans suggests that they have defects in components shared by processes analogous to vertebrate taste and olfaction. daf-11 and daf-21 mutations were previously shown to cause inappropriate response to the dauer-inducing pheromone. By mutational analysis and by disabling specific chemosensory sensilla with a laser, we show that neurons in the amphid sensilla are required for this pheromone response. Using behavioral assays, we find that daf-11 and daf-21 mutants are not defective in avoidance of certain non-volatile repellents, but are defective in taxis to non-volatile attractants. In addition, both mutants are defective in taxis to volatile attractants detected primarily by the amphid neuron AWC, but respond normally to volatile attractants detected primarily by AWA. We propose that daf-11 and daf-21 mediate sensory transduction for both volatile and non-volatile compounds in specific amphid neurons.  相似文献   

6.
G L Hazelbauer  S Harayama 《Cell》1979,16(3):617-625
We have characterized chemotactic mutants of E. coli that appear to be defective in a common linkage of two independent receptors to the central chemotactic components. The mutants do not respond to gradients of ribose or galactose and thus are called trg (taxis to ribose and galactose), after Ordal and Adler (1974b). These trg mutants are indistinguishable from their parent in tactic response to other attractants, swimming pattern, growth rates, and transport of ribose and galactose. The mutant cells contain the usual amounts of ribose and galactose receptors, and those proteins function normally in their other role, transport of their respective ligands. The mutations, generated by insertion of translocatable drug-resistance elements (transposons)8 are located near 31 min on the map of the E. coli chromosome, a locus far removed from the genes coding for the ribose and galactose receptors. Trg mutants do not resemble either specific receptor mutants or che mutants. The nature of the requirement for the trg product in the response to ribose and galactose is not defined, but evidence for interference of tactic signals from the ribose and galactose receptors (Strange and Koshland, 1976) supports the idea that the product functions directly in the transmission of tactic signals from the two receptors to the flagella.  相似文献   

7.
The tsr gene specifies a methyl-accepting membrane protein involved in chemotaxis to serine and several repellent compounds. We have characterized a special class of tsr mutations designated cheD which alter the signaling properties of the Tsr transducer. Unlike tsr null mutants, cheD strains are generally nonchemotactic, dominant in complementation tests, and exhibit a pronounced counterclockwise bias in flagellar rotation. Several lines of evidence showed that cheD mutations were alleles of the tsr gene. First, cheD mutations were mapped into the same deletion segments as conventional tsr mutations. Second, restriction site analysis of the transducing phage deletions used to construct the genetic map demonstrated that the endpoints of the deletion segments fell within the tsr coding sequence. Third, a number of the cheD mutants synthesized Tsr proteins with slight changes in electrophoretic mobility, consistent with alterations in Tsr primary structure. These mutant proteins were able to undergo posttranslational deamidation and methylation reactions in the same manner as wild-type Tsr protein; however, the steady-state level of Tsr methylation in cheD strains was very high. The methylation state of the Tar protein, another species of methyl-accepting protein in Escherichia coli, was also higher than normal in cheD strains, suggesting that the aberrant Tsr transducer in cheD mutants has a generalized effect on the sensory adaptation system of the cell. These properties are consistent with the notion that the Tsr protein of cheD mutants is locked in an excitatory signaling mode that both activates the sensory adaptation system and drowns out chemotactic signals generated by other transducer species. Further study of cheD mutations thus promises to reveal valuable information about the functional architecture of the Tsr protein and how this transducer controls flagellar behavior.  相似文献   

8.
The natural habitats of most microbes are dynamic and include spatial gradients of growth substrates, electron acceptors, pH, salts, and inhibitory compounds. To mimic this diffusive aspect of nature, we developed an analytical diffusion gradient chamber (DGC) that can be used to separate, enrich for, isolate, and study the behavior of microorganisms. The chamber is a polycarbonate box containing an arena (5 by 5 by 2 cm) into which is cast a semisolid growth medium. Continuously replenished solute reservoirs positioned on each side of the arena but separated from it by a porous membrane enable the formation throughout the gel of multiple, intersecting gradients of solutes in two dimensions. With glucose as the solute, a gradient which spanned a 100-fold range in concentration was established across the arena in about 4 days. The shape of the glucose gradient was accurately predicted by a mathematical model based on Fickian diffusion. The growth and migratory behavior of Escherichia coli in response to imposed gradients of attractants (aspartate, alpha-methyl aspartate, and serine) and a repellent (valine) were examined. Cells responded in predictable ways to such gradients by forming distinctive growth and migration patterns in the DGC. This was true for wild-type E. coli as well as specific chemotaxis and motility mutants. The patterns yielded information about the threshold concentration of chemoeffectors needed to elicit a response as well as their saturating concentration. It was also evident that the metabolism of attractants significantly affected the gradients and, hence, the movement of cells. Finally, it was possible to separate E. coli and Pseudomonas fluorescens in the DGC on the basis of their differential responses to gradients of various chemoeffectors.  相似文献   

9.
C M Rollins  F W Dahlquist 《Biochemistry》1980,19(20):4627-4632
Using a modification of the EGTA treatment of Oishi and Smith [Oishi, M., & Smith, C. L. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3569], Escherichia coli cells have been made permeable to S-adenosylmethionine and other related molecules in order to facilitate the study of methylation in chemotaxis. The permeable cells are nonmotile but respond to chemotactic stimuli by reversible methylation of their methyl-accepting chemotactic proteins (MCP I and MCP II) in a manner similar to that of untreated, motile cells. Addition of S-adenosyl-L-[methyl-3H]methionine to the permeable cells specifically labels two proteins, MCP I and MCP II. Methylation of these MCP's is dependent on the presence of wild-type gene products of flaI, flaA, cheB, cheX, tsr, and tar. The extent of methylation of the MCP's is affected by the presence of attractants or repellents: addition of attractant increases the steady-state level of methylation; addition of repellent causes rapid demethylation to a new steady-state level. Methylation is inhibited by the addition of the transmethylase inhibitors A9145C and Sinefungin, which are S-adenosylmethionine analogues, and by S-adenosylhomocysteine.  相似文献   

10.
Aspartate taxis mutants of the Escherichia coli tar chemoreceptor.   总被引:13,自引:8,他引:5       下载免费PDF全文
The Tar protein of Escherichia coli belongs to a family of methyl-accepting inner membrane proteins that mediate chemotactic responses to a variety of compounds. These transmembrane signalers monitor the chemical environment by means of specific ligand-binding sites arrayed on the periplasmic side of the membrane, and in turn control cytoplasmic signals that modulate the flagellar rotational machinery. The periplasmic receptor domain of Tar senses two quite different chemoeffectors, aspartate and maltose. Aspartate is detected through direct binding to Tar molecules, whereas maltose is detected indirectly when complexed with the periplasmic maltose-binding protein. Saturating levels of either aspartate or maltose do not block behavioral responses to the other compound, indicating that the detection sites for these two attractants are not identical. We initiated structure-function studies of these chemoreceptor sites by isolating tar mutants which eliminate aspartate or maltose taxis, while retaining the ability to respond to the other chemoeffector. Mutants with greatly reduced aspartate taxis are described and characterized in this report. When present in single copy in the chromosome, these tar mutations generally eliminated chemotactic responses to aspartate and structurally related compounds, such as glutamate and methionine. Residual responses to these compounds were shifted to higher concentrations, indicating a reduced affinity of the aspartate-binding site in the mutant receptors. Maltose responses in the mutants ranged from 10 to 80% of normal, but had no detectable threshold shifts, indicating that these receptor alterations may have little effect on maltose detection sensitivity. The mutational changes in 17 mutants were determined by DNA sequence analysis. Each mutant exhibited a single amino acid replacement at residue 64, 69, or 73 in the Tar molecule. The wild-type Tar transducer contains arginines at all three of these positions, implying that electrostatic forces may play an important role in aspartate detection.  相似文献   

11.
When Salmonella typhimurium cells were allowed to swarm on either a minimal or complex semisolid medium, patterns of cell aggregates were formed (depending on the thickness of the medium). No patterns were observed with nonchemotactic mutants. The patterns in a minimal medium were not formed by a mutant in the aspartate receptor for chemotaxis (Tar) or by wild-type cells in the presence of alpha-methyl-D,L-aspartate (an aspartate analog), thus resembling the patterns observed earlier in Escherichia coli (E. O. Budrene and H. C. Berg, Nature [London] 349:630-633, 1991) and S. typhimurium (E. O. Budrene and H. C. Berg, Abstracts of Conference II on Bacterial Locomotion and Signal Transduction, 1993). Distinctively, the patterns in a complex medium had a different morphology and, more importantly, were Tar independent. Furthermore, mutations in any one of the genes encoding the methyl-accepting chemotaxis receptors (tsr, tar, trg, or tcp) did not prevent the pattern formation. Addition of saturating concentrations of the ligands of these receptors to wild-type cells did not prevent the pattern formation as well. A tar tsr tcp triple mutant also formed the patterns. Similar results (no negative effect on pattern formation) were obtained with a ptsI mutant (defective in chemotaxis mediated by the phosphoenolpyruvate-dependent carbohydrate:phosphotransferase system [PTS]) and with addition of mannitol (a PTS ligand) to wild-type cells. It therefore appears that at least two different pathways are involved in the patterns formed by S. typhimurium: Tar dependent and Tar independent. Like the Tar-dependent patterns observed by Budrene and Berg, the Tar-independent patterns could be triggered by H(2)O(2), suggesting that both pathways of pattern formation may be triggered by oxidative stress.  相似文献   

12.
L Lee  T Mizuno    Y Imae 《Journal of bacteriology》1988,170(10):4769-4774
Tsr, a chemoreceptor for serine and repellents in Escherichia coli, also functions as a thermoreceptor. The relationship between the chemoreceptor and thermoreceptor functions of Tsr was examined in five tsr mutants with altered serine detection thresholds. The thermosensing abilities of the mutant Tsr proteins were not affected by the alterations in their affinities to serine. In contrast, the ability of serine to inactivate thermoreceptor function was altered in these mutants. The minimal serine concentration required for thermoreceptor inactivation was directly related to the decreased affinity of the mutant Tsr for serine. The amino acid replacements in the mutant receptors were deduced from DNA sequence analyses and occurred at two different locations in the presumed periplasmic domain of Tsr. Two mutations caused histidine or cysteine replacements at arginine 64, whereas three others caused isoleucine or proline replacements at threonine 156.  相似文献   

13.
The adaptation process in several cheD chemotaxis mutants, which carry defects in tsr, the serine transducer gene, was examined. cheD mutants are smooth swimming and generally nonchemotactic; the defect is dominant to the wild-type tsr gene (J. S. Parkinson, J. Bacteriol. 142:953-961, 1980). All classes of methyl-accepting chemotaxis proteins synthesized in unstimulated cheD strains are overmethylated relative to the wild type. We found that the steady-state rate of demethylation in cheD mutants was low; this may explain their overmethylated phenotype. In addition, all cheD mutants showed diminished responsiveness of methylesterase activity to attractant and repellent stimuli transduced by either the Tsr or Tar protein, and they did not adapt. These results suggest that the dominant nature of the cheD mutations is manifested as a general defect in the regulation of demethylation. Some of these altered properties of methylesterase activity in cheD mutants were exhibited in wild-type cells that were treated with saturating concentrations of serine. The mutant Tsr protein thus seems to be locked into a signaling mode that suppresses tumbling and inhibits methylesterase activity in a global fashion. We found that the Tar and mutant Tsr proteins synthesized in cheD strains were methylated and deamidated at the correct sites and that the mutations were not located in the methylated peptides. Thus, the signaling properties of the transducers may be controlled at sites distinct from the methyl-accepting sites.  相似文献   

14.
While wild-type Escherichia coli K12 cannot grow with L-serine as carbon source, two types of mutants with altered methionine metabolism can. The first type, metJ mutants, in which the methionine biosynthetic enzymes are expressed constitutively, are able to grow with L-serine as carbon source. Furthermore, a plasmid carrying the metC gene confers ability to grow on L-serine. These observations suggest that in these mutants, L-serine deamination may be a result of a side-reaction of the metC gene product, cystathionine beta-lyase. The second type is exemplified by two newly isolated strains carrying mutations mapping between 89.6 and 90 min. These mutants use L-serine as carbon source, and also require methionine for growth with glucose at 37 degrees C and above. The phenotypes of the new mutants resemble those of both met and his constitutive mutants in some respects, but have been differentiated from both of them.  相似文献   

15.
A Pseudomonas aeruginosa mutant, defective in taxis toward L-serine but responsive to peptone, was selected by the swarm plate method after N-methyl-N'-nitrosoguanidine mutagenesis. The mutant, designated PCT1, was fully motile but failed to show chemotactic responses to glycine, L-serine, L-threonine, and L-valine. PCT1 also showed weaker responses to some other commonly occurring L-amino acids than did the wild-type strain PAO1. A chemotactic transducer gene, denoted pctA (Pseudomonas chemotactic transducer A), was cloned by phenotypic complementation of PCT1. Nucleotide sequence analysis showed that the pctA gene encodes a putative polypeptide of 629 amino acids with a calculated mass of 68,042. A hydropathy plot of the predicted polypeptide suggested that PctA may be an integral membrane protein with two potential membrane-spanning regions. The C-terminal domain of PctA showed high homology with the enteric methyl-accepting chemotaxis proteins (MCPs). The most significant amino acid sequence similarity was found in the region of MCPs referred to as the highly conserved domain. The pctA gene was inactivated by insertion of a kanamycin resistance gene cassette into the wild-type gene, resulting in the same observed deficiency in taxis toward L-amino acids as PCT1. In vivo methyl labeling experiments with L-[methyl-3H]methionine showed that this knockout mutant lacked an MCP with a molecular weight of approximately 68,000.  相似文献   

16.
A set of chemotaxis mutants of Bacillus subtilis was complemented by using SP beta c2 transducing bacteriophage either containing cloned segments of DNA or derived from abnormal excision of SP beta c2 dl2::Tn917 inserted into the chemotaxis region. Representative mutants were characterized in capillary assays for chemotaxis toward four amino acids and mannitol and in tethered-cell experiments for addition and removal of two attractants and two repellents. Twenty complementation groups were identified, in addition to the cheR previously characterized. All were found to be defective in chemotaxis toward all chemoeffectors. They were assigned the names cheA through cheU. The large number of general chemotaxis genes in B. subtilis, in contrast to the six in Escherichia coli, suggests fundamental differences in the mechanism of chemotaxis in the two species.  相似文献   

17.
Properties of Mutants in Galactose Taxis and Transport   总被引:29,自引:17,他引:12  
beta-Methylgalactoside (mgl) permease mutants of Escherichia coli, which are defective in three genes, mglA, mglB, and mglC, were assayed for galactose taxis and galactose transport. The mglB product is the galactose-binding protein. Previous evidence, supported by our new findings, shows that the galactose-binding protein is the recognition component for galactose taxis as well as for galactose transport. Most mutants defective in mglB showed strong effects on both chemotaxis and transport; however, a couple showed effects chiefly on one process or the other, thus allowing a separation of chemotaxis and transport. The mglA and mglC products have not yet been identified, but they must be components of the galactose transport machinery since mutants defective in mglA or mglC, or both, showed strongly reduced transport. Although some of these mutants showed little chemotaxis, most gave close to wild-type chemotactic responses. Thus, transport is not required for galactose taxis. The bacteria detect changes in the fraction of binding protein associated with galactose, not changes in the rate of transport.  相似文献   

18.
Maltose chemoreceptor of Escherichia coli.   总被引:33,自引:24,他引:9       下载免费PDF全文
Strains carrying mutations in the maltose system of Escherichia coli were assayed for maltose taxis, maltose uptake at 1 and 10 muM maltose, and maltose-binding activity released by osmotic shock. An earlier conclusion that the metabolism of maltose is not necessary for chemoreception is extended to include the functioning of maltodextrin phosphorylase, the product of malP, and the genetic control of the maltose receptor by the product of malT is confirmed. Mutants in malF and malK are defective in maltose transport at low concentrations as well as high concentrations, as previously shown, but are essentially normal in maltose taxis. The product of malE has been previously shown to be the maltose-binding protein and was implicated in maltose transport. Most malE mutants are defective in maltose taxis, and all those tested are defective in maltose transport at low concentrations. Thus, as previously suggested, the maltose-binding protein probably serves as the recognition component of the maltose receptor, as well as a component of the transport system. tsome malE mutants release maltose-binding activity and are tactic toward maltose, although defective in maltose transport, implying that the binding protein has separate sites for interaction with the chemotaxis and transport systems. Some mutations in lamB, whose product is the receptor for the bacteriophage lamba, cause defects in maltose taxis, indicating some involvement of that product in maltose reception.  相似文献   

19.
Glucose taxis and O2-taxis in Escherichia coli signal to flagella via a pathway that includes PTSglc and adenylate cyclase. Information from a number of attractants and repellents is focused at the level of methy-accepting chemotaxis proteins (MCPs) and information is passed to flagella by a separate pathway. Mutants defective in adenylate cyclase (Δcya) had a residual taxis to glucose that was eliminated by preincubating the cells with MCP attractants, or by depleting the -CH3 donor. A methyltransferase mutant had a decreased sensitivity to MCP repellents and this response was completely blocked by preincubating the cells with glucose. Likewise, the response of cells, depleted for -CH3, towards repellents, was blocked if bacteria carried a pts mutation. It is concluded that PTS and MCP pathways exchange information. In cya cells, O2 taxis was restored in the presence of maltose, an MCPII attractat. It is suggested that MCPII is an additional protonmotive force (pmf) sensor.  相似文献   

20.
Rhodobacter sphaeroides can swim toward a wide range of attractants (a process known as taxis), propelled by a single rotating flagellum. The reversals of motor direction that cause tumbles in Eschericia coli taxis are replaced by brief motor stops, and taxis is controlled by a complex sensory system with multiple homologues of the E. coli sensory proteins. We tethered photosynthetically grown cells of R. sphaeroides by their flagella and measured the response of the flagellar motor to changes in light intensity. The unstimulated bias (probability of not being stopped) was significantly larger than the bias of tethered E. coli but similar to the probability of not tumbling in swimming E. coli. Otherwise, the step and impulse responses were the same as those of tethered E. coli to chemical attractants. This indicates that the single motor and multiple sensory signaling pathways in R. sphaeroides generate the same swimming response as several motors and a single pathway in E. coli, and that the response of the single motor is directly observable in the swimming pattern. Photo-responses were larger in the presence of cyanide or the uncoupler carbonyl cyanide 4-trifluoromethoxyphenylhydrazone (FCCP), consistent with the photo-response being detected via changes in the rate of electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号