首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Zhou L  Hodeib M  Abad JD  Mendoza L  Kore AR  Hu Z 《BioTechniques》2007,43(1):101-105
Tissue microarrays (TMAs) are widely used to analyze gene expression in multiple pathological samples on a single slide. Currently, most TMA slides are made by coring paraffin-embedded tissues and arraying them into a paraffin block, from which TMA sections are cut. However paraffin-based TMA technology may not be compatible with frozen clinical tissue samples, which have a higher quality of RNAs and proteins for preparing TMAs than paraffin-embedded tissue samples. In this study, we developed an alternative TMA technology that is applicable to a broader range of frozen tissue samples. Our method takes advantage of a newly developed array recipient block that can be used to array small tissue cores. After arraying tissue cores, the tissue block can be immediately sectioned on a cryostat microtome to make TMA slides. TMAs made using this method have well-defined array configurations and good tissue/cell morphology. Immunohistochemistry and in situ hybridization study also revealed well-preserved proteins and mRNAs on TMA slides. Our method significantly simplifies TMA preparation and assembly when frozen pathological tissues are used. Our technology provides an alternative tool for creating high-quality TMAs for the general research community to study gene expressions in pathological samples.  相似文献   

2.
Tissue microarray (TMA) technology provides a possibility to explore protein expression patterns in a multitude of normal and disease tissues in a high-throughput setting. Although TMAs have been used for analysis of tissue samples, robust methods for studying in vitro cultured cell lines and cell aspirates in a TMA format have been lacking. We have adopted a technique to homogeneously distribute cells in an agarose gel matrix, creating an artificial tissue. This enables simultaneous profiling of protein expression in suspension- and adherent-grown cell samples assembled in a microarray. In addition, the present study provides an optimized strategy for the basic laboratory steps to efficiently produce TMAs. Presented modifications resulted in an improved quality of specimens and a higher section yield compared with standard TMA production protocols. Sections from the generated cell TMAs were tested for immunohistochemical staining properties using 20 well-characterized antibodies. Comparison of immunoreactivity in cultured dispersed cells and corresponding cells in tissue samples showed congruent results for all tested antibodies. We conclude that a modified TMA technique, including cell samples, provides a valuable tool for high-throughput analysis of protein expression, and that this technique can be used for global approaches to explore the human proteome.  相似文献   

3.
Archived formalin-fixed paraffin-embedded (FFPE) tissue collections represent a valuable informational resource for proteomic studies. Multiple FFPE core biopsies can be assembled in a single block to form tissue microarrays (TMAs). We describe a protocol for analyzing protein in FFPE-TMAs using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). The workflow incorporates an antigen retrieval step following deparaffinization, in situ trypsin digestion, matrix application and then mass spectrometry signal acquisition. The direct analysis of FFPE-TMA tissue using IMS allows direct analysis of multiple tissue samples in a single experiment without extraction and purification of proteins. The advantages of high speed and throughput, easy sample handling and excellent reproducibility make this technology a favorable approach for the proteomic analysis of clinical research cohorts with large sample numbers. For example, TMA analysis of 300 FFPE cores would typically require 6 h of total time through data acquisition, not including data analysis.  相似文献   

4.
BACKGROUND: The recently developed tissue microarray (TMA) technology allows the arrangement of up to a thousand tissue specimens on a single microscope slide. This technology enables researchers to perform gene copy number studies on very large series of archival formalin-fixed tissues using fluorescence in situ hybridization (FISH). However, the hybridization properties of individual archival specimens can vary considerably. Therefore a highly optimized protocol is needed to fulfill the task of producing evaluable hybridization signals simultaneously in hundreds of specimens in a TMA. METHODS: The performance of two different FISH protocols, the standard protocol for paraffin embedded tissues and our new optimized protocol, was tested on TMAs using probes for the HER-2 and ZNF217 genes as well as the chromosome 17 centromere. RESULTS: The new protocol resulted in greatly increased signal intensity and an almost 30% increase in the number of tissue samples with evaluable hybridization signals. CONCLUSIONS: Our improved protocol for FISH on TMAs provides standardized hybridization conditions leading to high-quality hybridization signals in the majority of specimens. The increases in the signal intensity and the number of evaluable samples are extremely important for the successful analyses of TMAs by FISH and will allow the utilization of the TMA technology in its full potential.  相似文献   

5.
Few data are available regarding the reliability of fluorescence in-situ hybridization (FISH), especially for chromosomal deletions, in high-throughput settings using tissue microarrays (TMAs). We performed a comprehensive FISH study for the detection of chromosomal translocations and deletions in formalin-fixed and paraffin-embedded (FFPE) tumor specimens arranged in TMA format. We analyzed 46 B-cell lymphoma (B-NHL) specimens with known karyotypes for translocations of IGH-, BCL2-, BCL6- and MYC-genes. Locus-specific DNA probes were used for the detection of deletions in chromosome bands 6q21 and 9p21 in 62 follicular lymphomas (FL) and six malignant mesothelioma (MM) samples, respectively. To test for aberrant signals generated by truncation of nuclei following sectioning of FFPE tissue samples, cell line dilutions with 9p21-deletions were embedded into paraffin blocks. The overall TMA hybridization efficiency was 94%. FISH results regarding translocations matched karyotyping data in 93%. As for chromosomal deletions, sectioning artefacts occurred in 17% to 25% of cells, suggesting that the proportion of cells showing deletions should exceed 25% to be reliably detectable. In conclusion, FISH represents a robust tool for the detection of structural as well as numerical aberrations in FFPE tissue samples in a TMA-based high-throughput setting, when rigorous cut-off values and appropriate controls are maintained, and, of note, was superior to quantitative PCR approaches.  相似文献   

6.
This is a review of several new approaches developed at or adopted by the Cooperative Prostate Cancer Tissue Resource (CPCTR) to resolve issues involved in tissue microarray (TMA) construction and use. CPCTR developed the first needle biopsy TMA, allowing researchers to obtain 200 or more consecutive cancer sections from a single biopsy core. Using radiographs of original paraffin blocks to measure tissue thickness we developed a method to produce TMAs with a larger number of usable sections. The modular approach to plan TMA construction is also a novel concept wherein TMAs of different types, such as tumor grade TMAs, metastasis TMA and hormone refractory tumors TMA can be combined to form an ensemble of TMAs with expanded research utility, such as support for tumor progression studies. We also implemented an open access TMA Data Exchange Specification that allows TMA data to be organized in a self-describing XML document annotated with well-defined common data elements. It ensures inter-laboratory reproducibility because it offers information describing the preparation of TMA blocks and slides. There are many important aspects that may be missed by both beginners and experienced investigators in areas of TMA experimental design, human subjects protection, population sample size, selection of tumor areas to sample, strategies for saving tissues, choice of antibodies for immunohistochemistry, and TMA data management.  相似文献   

7.
Screening for specific genetic aberrations by fluorescence and chromogenic in situ hybridization (fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH)) can reveal associations with tumor types or subtypes, cellular morphology and clinical behavior. FISH and CISH methodologies are based on the specific annealing (hybridization) of labeled genomic sequences (probes) to complementary nucleic acids within fixed cells to allow their detection, quantification and spatial localization. Formalin-fixed paraffin embedded (FFPE) material is the most widely available source of tumor samples. Increasingly, tissue microarrays (TMAs) consisting of multiple cores of FFPE material are being used to enable simultaneous analyses of many archival samples. Here we describe robust protocols for the FISH and CISH analyses of genetic aberrations in FFPE tissue, including TMAs. Protocols include probe preparation, hybridization and detection. Steps are described to reduce background fluorescence and strip probes for repeat FISH analyses to maximize the use of tissue resources. The basic protocol takes 2-3 d to complete.  相似文献   

8.
9.
Fresh or frozen tissue samples will always be the best tissue source for the analysis of nucleic acids and proteins from tissues. However, their long-term storage is expensive and laborious. Much interest has therefore been focused on the question whether the almost infinite resources of formalin fixed and paraffin embedded tissue samples in the archives of pathology and histology departments can be used for research on biomarkers and molecular mechanisms of disease. In recent years the methods and protocols for the extraction of DNA, mRNA, miRNA and proteins from formalin-fixed and paraffin-embedded tissue samples have improved enormously. Especially, the possibilities of analysing DNA and miRNA in FFPE have reached a level that allows their application as a first line approach in the search for biomarkers. In contrast, many questions remain in terms of quantification of mRNA and protein expression levels in formalin-fixed and paraffin-embedded tissue samples. This review gives an overview on current potentials and limitations of the quantification of DNA, miRNA, mRNA and the proteome in FFPE tissue samples. The chemical events during formalin fixation and paraffin embedding and alternatives to formalin fixation are described. In addition, methods and general problems of DNA, miRNA, mRNA and protein extraction and the current knowledge on the feasibility and accuracy of quantitative gene expression analysis in FFPE tissues is summarized.  相似文献   

10.
Global mass spectrometry (MS) profiling and spectral count quantitation are used to identify unique or differentially expressed proteins and can help identify potential biomarkers. MS has rarely been conducted in retrospective studies, because historically, available samples for protein analyses were limited to formalin-fixed, paraffin-embedded (FFPE) archived tissue specimens. Reliable methods for obtaining proteomic profiles from FFPE samples are needed. Proteomic analysis of these samples has been confounded by formalin-induced protein cross-linking. The performance of extracted proteins in a liquid chromatography tandem MS format from FFPE samples and extracts from whole and laser capture microdissected (LCM) FFPE and frozen/optimal cutting temperature (OCT)–embedded matched control rat liver samples were compared. Extracts from FFPE and frozen/OCT–embedded livers from atorvastatin-treated rats were further compared to assess the performance of FFPE samples in identifying atorvastatin-regulated proteins. Comparable molecular mass representation was found in extracts from FFPE and OCT-frozen tissue sections, whereas protein yields were slightly less for the FFPE sample. The numbers of shared proteins identified indicated that robust proteomic representation from FFPE tissue and LCM did not negatively affect the number of identified proteins from either OCT-frozen or FFPE samples. Subcellular representation in FFPE samples was similar to OCT-frozen, with predominantly cytoplasmic proteins identified. Biologically relevant protein changes were detected in atorvastatin-treated FFPE liver samples, and selected atorvastatin-related proteins identified by MS were confirmed by Western blot analysis. These findings demonstrate that formalin fixation, paraffin processing, and LCM do not negatively impact protein quality and quantity as determined by MS and that FFPE samples are amenable to global proteomic analysis. (J Histochem Cytochem 57:849–860, 2009)  相似文献   

11.
Archival formalin-fixed paraffin-embedded (FFPE) tissues are a powerful tool for examining the clinical course of diseases. These specimens represent an incredible mine of valuable clinical and biological information for proteomic investigation. MALDI-TOF imaging MS (MALDI-IMS) is a protein profiling technique which enables the direct sampling of histological section; however, the quality of molecular data are strongly influenced by the tissue preparation condition. In fact, in previous years most of the studies employing such a technological platform have been conducted using cryo-preserved tissues. We have developed an in vitro approach using "tissue surrogate" samples in order to explore different protein unlocking procedures which might enable a suitable recovery of polypeptides for MS analysis. The developed protocols have been compared both by MALDI-TOF MS and nLC-MS(E) analysis either on surrogate samples or on FFPE specimen from human breast cancer. The collected evidence has been applied for the preparation of FFPE tissue sections following MALDI-IMS analysis. Our results outline the possibility to obtain valuable peptide mass spectra profiles form FFPE preparations by applying a combined two steps procedure of heat induced antigen retrieval (HIAR) in presence of EDTA and on target trypsin hydrolysis. A multivariate statistical evaluation is presented and discussed according to molecular spatial distributions and tissue morphology.  相似文献   

12.
A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.  相似文献   

13.
We describe an alternative polyethylene glycol (PEG) embedding procedure which utilizes PEG 200 for dehydration and PEG 600 for infiltration and embedding of perfusion-fixed rat liver. PEG 600 has a melting point of 22 degrees C, enabling infiltration of fixed tissue to be performed at room temperature. Sections (2 microM) cut in a cryostat at -20 degrees C and immobilized in agarose were readily labeled by immunoperoxidase protocols with monoclonal antibodies to hepatocyte membrane antigens. Subsequent examination by light microscopy or by electron microscopy after re-embedding in resin and ultra-thin sectioning showed excellent preservation of morphology, with minimal impairment of antigenicity.  相似文献   

14.
Formalin fixation has been the standard method for conservation of clinical specimens for decades. However, a major drawback is the high degradation of nucleic acids, which complicates its use in genome-wide analyses. Unbiased identification of biomarkers, however, requires genome-wide studies, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K BeadChip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better compared with restored FFPE DNA in genome-wide DNA methylation analysis. In addition, DNA from PAXgene tissue can be directly used on the array without prior restoration, rendering the analytical process significantly more time- and cost-effective.  相似文献   

15.
Hospital tissue repositories possess a vast and valuable supply of disease samples with matched retrospective clinical information. Detection and characterization of disease biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues will greatly aid the understanding of the diseases mechanisms and help in the development of diagnostic and prognostic markers. In this study, the possibility of using full-length proteins extracted from clinically archived FFPE tissues in two-dimensional (2-D) gel-based proteomics was evaluated. The evaluation was done based on two types of tumor tissues (breast and prostate) and two extraction protocols. The comparison of the 2-D patterns of FFPE extracts obtained by two extraction protocols with the matching frozen tissue extracts showed that only 7–10 % of proteins from frozen tissues can be matched to proteins from FFPE tissues. Most of the spots in the 2-D FFPE’s maps had pl 4–6, while the percentages of proteins with pl above 6 were 3–5 times lower in comparison to the fresh/frozen tissue. Despite the three-fold lower number of the detected spots in FFPE maps compared to matched fresh/frozen maps, 67–78 % of protein spots in FFPE could not be matched to the corresponding spots in the fresh/frozen tissue maps indicating irreversible protein modifications. In conclusion, the inability to completely reverse the cross-linked complexes and overcome protein fragmentation with the present day FFPE extraction methods stands in the way of effective use of these samples in 2-D gel based proteomics studies.  相似文献   

16.

Background

Cancer re-sequencing programs rely on DNA isolated from fresh snap frozen tissues, the preparation of which is combined with additional preservation efforts. Tissue samples at pathology departments are routinely stored as formalin-fixed and paraffin-embedded (FFPE) samples and their use would open up access to a variety of clinical trials. However, FFPE preparation is incompatible with many down-stream molecular biology techniques such as PCR based amplification methods and gene expression studies.

Methodology/Principal Findings

Here we investigated the sample quality requirements of FFPE tissues for massively parallel short-read sequencing approaches. We evaluated key variables of pre-fixation, fixation related and post-fixation processes that occur in routine medical service (e.g. degree of autolysis, duration of fixation and of storage). We also investigated the influence of tissue storage time on sequencing quality by using material that was up to 18 years old. Finally, we analyzed normal and tumor breast tissues using the Sequencing by Synthesis technique (Illumina Genome Analyzer, Solexa) to simultaneously localize genome-wide copy number alterations and to detect genomic variations such as substitutions and point-deletions and/or insertions in FFPE tissue samples.

Conclusions/Significance

The application of second generation sequencing techniques on small amounts of FFPE material opens up the possibility to analyze tissue samples which have been collected during routine clinical work as well as in the context of clinical trials. This is in particular important since FFPE samples are amply available from surgical tumor resections and histopathological diagnosis, and comprise tissue from precursor lesions, primary tumors, lymphogenic and/or hematogenic metastases. Large-scale studies using this tissue material will result in a better prediction of the prognosis of cancer patients and the early identification of patients which will respond to therapy.  相似文献   

17.
We have developed a method for histochemical demonstration of a wide range of enzymes in freeze-dried, resin-embedded tissue. Freeze-dried tissue specimens were embedded without fixation at low temperature (4 degrees C or -20 degrees C) in glycol methacrylate resin or LR Gold resin. Enzyme activity was optimally preserved by embedding the freeze-dried tissue in glycol methacrylate resin. All enzymes studied (oxidoreductases, esterases, peptidases, and phosphatases), except for glucose-6-phosphatase, were readily demonstrated. The enzymes displayed high activity and were accurately localized without diffusion when tissue sections were incubated in aqueous media, addition of colloid stabilizers to the incubating media not being required. Freeze-drying combined with low-temperature resin embedding permits the demonstration of a wide range of enzymes with accurate enzyme localization, high enzyme activity, and excellent tissue morphology.  相似文献   

18.
Annotated formalin-fixed, paraffin-embedded (FFPE) tissue archives constitute a valuable resource for retrospective biomarker discovery. However, proteomic exploration of archival tissue is impeded by extensive formalin-induced covalent cross-linking. Robust methodology enabling proteomic profiling of archival resources is urgently needed. Recent work is beginning to support the feasibility of biomarker discovery in archival tissues, but further developments in extraction methods which are compatible with quantitative approaches are urgently needed. We report a cost-effective extraction methodology permitting quantitative proteomic analyses of small amounts of FFPE tissue for biomarker investigation. This surfactant/heat-based approach results in effective and reproducible protein extraction in FFPE tissue blocks. In combination with a liquid chromatography-mass spectrometry-based label-free quantitative proteomics methodology, the protocol enables the robust representative and quantitative analyses of the archival proteome. Preliminary validation studies in renal cancer tissues have identified typically 250-300 proteins per 500 ng of tissue with 1D LC-MS/MS with comparable extraction in FFPE and fresh frozen tissue blocks and preservation of tumor/normal differential expression patterns (205 proteins, r = 0.682; p < 10(-15)). The initial methodology presented here provides a quantitative approach for assessing the potential suitability of the vast FFPE tissue archives as an alternate resource for biomarker discovery and will allow exploration of methods to increase depth of coverage and investigate the impact of preanalytical factors.  相似文献   

19.
We developed a method for histochemical demonstration of a wide range of enzymes in freeze-substituted glycol methacrylate-embedded tissue. Tissue specimens were freeze-substituted in acetone and then embedded at low temperature in glycol methacrylate resin. All enzymes studied (oxidoreductases, hydrolases) were readily demonstrated. The enzymes displayed high activity and were accurately localized without diffusion when tissue sections were incubated in aqueous media, addition of colloid stabilizers to the incubating media not being required. Freeze-substitution combined with low-temperature glycol methacrylate embedding permits the demonstration of a wide range of enzymes with accurate enzyme localization, maintenance of enzyme activity, and excellent tissue morphology.  相似文献   

20.
The loss of antigenicity in archival formalin-fixed paraffin-embedded (FFPE) tissue sections negatively affects both diagnostic histopathology and advanced molecular studies. The mechanisms underlying antigenicity loss in FFPE tissues remain unclear. The authors hypothesize that water is a crucial contributor to protein degradation and decrement of immunoreactivity in FFPE tissues. To test their hypothesis, they examined fixation time, processing time, and humidity of storage environment on protein integrity and antigenicity by immunohistochemistry, Western blotting, and protein extraction. This study revealed that inadequate tissue processing, resulting in retention of endogenous water in tissue sections, results in antigen degradation. Exposure to high humidity during storage results in significant protein degradation and reduced immunoreactivity, and the effects of storage humidity are temperature dependent. Slides stored under vacuum with desiccant do not protect against the effects of residual water from inadequate tissue processing. These results support that the presence of water, both endogenously and exogenously, plays a central role in antigenicity loss. Optimal tissue processing is essential. The parameters of optimal storage of unstained slides remain to be defined, as they are directly affected by preanalytic variables. Nevertheless, minimization of exposure to water is required for antigen preservation in FFPE tissue sections. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号