首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitric oxide (NO) production is increased in the human colonic mucosa in intestinal inflammation. We examined the effect of corticosteroids and the role of mononuclear cells in this production. Colonic biopsies from patients with ulcerative colitis and normal controls were cultured with either budesonide or prednisolone in the presence of proinflammatory cytokines. Human mixed mononuclear cells (MMCs) were cocultured with HT-29 cells stimulated with IFN-gamma and LPS in the presence or absence of corticosteroids. Nitrite production was measured in supernatants by a modification of the Griess reaction, and inducible NO synthase (iNOS) mRNA expression was studied in colonic tissue by RT-PCR. Both steroids significantly suppressed the nitrite production and iNOS mRNA expression in inflamed colonic biopsies from ulcerative colitis patients and in cytokine-stimulated normal colonic biopsies but not in cytokine-stimulated HT-29 cells. Nitrite production by HT-29 cells was significantly increased (P < 0.01) in cocultures with MMCs stimulated with IFN-gamma and LPS. The presence of either prednisolone or budesonide significantly (P < 0.01) suppressed nitrite production from cocultures of HT-29 cells and MMCs but not from cultures of HT-29 cells stimulated with conditioned media from activated MMCs. Interestingly, stimulation of HT-29 with conditioned media from MMCs pretreated with steroids before stimulation with LPS and IFN-gamma induced a significantly (P < 0.01) lower nitrite production. These results suggest that the inhibitory effect of corticosteroids on the NO production in the intestinal inflammation might be via the inhibition of MMC-produced mediators responsible for NO production by colonic epithelial cells.  相似文献   

3.
The production of nitric oxide (NO) was measured in cultures of spleen cells stimulated by lipopolysaccharide (LPS), IL-2 or LPS + IL-2. We observed that NO synthesis is increased by IFN-gamma but inhibited by IFN-alpha/beta. This is not the case when IL-2 is present in the cultures, since interferons play a minor role in the regulation of the NO production. When IL-2 and LPS were associated in the cultures, the IFN-alpha/beta role seems more important than that of IFN-gamma. PGE(2) inhibits NO production in LPS supplemented cultures but has a slight effect in the presence of IL-2 and no effect with IL-2 + LPS. 3-isoButyl-1-methylxanthine (IBMX), an inhibitor of phosphodiesterases, induces a decrease of IFN production. In the presence of H-7, an inhibitor of protein kinase C (PKC), NO production is reduced when the cultures are supplemented by LPS or IL-2 but not when IL-2 and LPS are both added. H-7 also reduced IFN production. In the presence of N(G)-monomethyl-L-arginine (N-MMA), an inhibitor of NO synthesis, IFN production was increased, with no change in the cytotoxic activity. Hence, interferons regulate NO production by mouse spleen cells and, in return, NO modulates the generation of IFN.  相似文献   

4.
The amino acid arginine is the sole precursor for nitric oxide (NO) synthesis. We recently demonstrated that an acute reduction of circulating arginine does not compromise basal or LPS-inducible NO production in mice. In the present study, we investigated the importance of citrulline availability in ornithine transcarbamoylase-deficient spf(ash) (OTCD) mice on NO production, using stable isotope techniques and C57BL6/J (wild-type) mice controls. Plasma amino acids and tracer-to-tracee ratios were measured by LC-MS. NO production was measured as the in vivo conversion of l-[guanidino-(15)N(2)]arginine to l-[guanidine-(15)N]citrulline; de novo arginine production was measured as conversion of l-[ureido-(13)C-5,5-(2)H(2)]citrulline to l-[guanidino-(13)C-5,5-(2)H(2)]arginine. Protein metabolism was measured using l-[ring-(2)H(5)]phenylalanine and l-[ring-(2)H(2)]tyrosine. OTC deficiency caused a reduction of systemic citrulline concentration and production to 30-50% (P < 0.001), reduced de novo arginine production (P < 0.05), reduced whole-body NO production to 50% (P < 0.005), and increased net protein breakdown by a factor of 2-4 (P < 0.001). NO production was twofold higher in female than in male OTCD mice in agreement with the X-linked location of the OTC gene. In response to LPS treatment (10 mg/kg ip), circulating arginine increased in all groups (P < 0.001), and NO production was no longer affected by the OTC deficiency due to increased net protein breakdown as a source for arginine. Our study shows that reduced citrulline availability is related to reduced basal NO production via reduced de novo arginine production. Under basal conditions this is probably cNOS-mediated NO production. When sufficient arginine is available after LPS stimulated net protein breakdown, NO production is unaffected by OTC deficiency.  相似文献   

5.
Summary. The present study was designed to evaluate the relevance of arginine transport in nitric oxide (NO) synthesis in vascular smooth muscle cells. For this purpose, NO synthesis and arginine transport (system B0,+ and y+) were evaluated in cells treated with IL-1β or angiotensin II (Ang II). In addition, the effects of 5 mM lysine and glutamine, competitive inhibitors of systems y+ and B0,+ respectively, were examined. L-arginine transport was estimated with 3H-labelled arginine and NO was determined with the Griess reagent. These studies were done in control conditions, arginine-starved cells, and in cells incubated in media containing 10 mM arginine. Our data indicate that induction of NO biosynthesis by IL-1β depends on external arginine when cells are arginine-depleted for 24 hours. The concentration of arginine producing half maximal activation of NO synthesis in arginine-depleted cells ([arginine]i < 10 μM) was 41.1 ± 18 μM. By contrast, in normal culture conditions, NO synthesis occurred independently of arginine transport. Neither 5 mM lysine or glutamine which abolished arginine transport through systems y+ and B0,+, respectively, reduced nitrite release in cells incubated in normal media. This suggests that the relevance of arginine uptake to NO synthesis depends on the status of intracellular arginine pools. Intracellular arginine concentrations were not affected by the stimulation of NO production using IL-1β or its inhibition using Ang II, but were markedly reduced by arginine starvation for 48 h. Aspartate levels were also reduced by arginine-depletion, but were not affected in cells incubated with 10 mM arginine. By contrast, glutamate levels were reduced in arginine-starved cells and were increased in cells incubated in arginine-supplemented medium. Ornithine levels were markedly increased by arginine supplementation. Altogether, these findings indicate that NO synthesis is normally independent of membrane transport. However in arginine-depleted cells, membrane transport is essential for NO synthesis. It is concluded that arginine transport is required for the long-term maintenance of intracellular arginine pools. Received February 7, 1999; Accepted June 21, 1999  相似文献   

6.
7.
Membrane-bound regulatory carboxypeptidases cleave only COOH-terminal basic residues from peptides and proteins. To investigate whether carboxypeptidase-generated arginine can increase nitric oxide (NO) synthesis we perfused rat lungs from animals challenged with LPS or used rat lung microvascular endothelial cells (RLMVEC) stimulated with LPS and IFN-gamma, conditions that induced inducible NO synthase (iNOS) expression. Addition of carboxypeptidase substrate furylacryloyl-Ala-Arg (Fa-A-R) or Arg to the lung perfusate increased NO production two- to threefold. The carboxypeptidase inhibitor 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGTA) blocked the effect of Fa-A-R but not free Arg. Lysine, an Arg transport inhibitor, blocked the increase in NO stimulated by Fa-A-R. HPLC analysis showed that Fa-A-R hydrolysis was blocked by MGTA but not lysine. In cytokine-treated RLMVEC, Fa-A-R also stimulated NO production inhibited by MGTA or lysine. Membrane fractions from rat lungs or RLMVEC contained carboxypeptidase M-like activity at neutral pH that increased twofold in RLMVEC treated with LPS + IFN-gamma. The kinetics of NO production in RLMVEC was measured with a porphyrinic microsensor. Addition of 1 mM Arg or Fa-A-R to cells preincubated in Arg-free medium resulted in a slowly rising, prolonged (>20 min) NO output. NO production stimulated by Fa-A-R was blocked by MGTA or iNOS inhibitor 1400W. HPLC analysis of Fa-A-R hydrolysis revealed only 3.7 microM Arg was released over 20 min. Thus NO production in RLMVEC is stimulated more efficiently by Arg released from carboxypeptidase substrates than free Arg. These studies reveal a novel mechanism by which the Arg supply for NO production in inflammatory conditions may be maintained.  相似文献   

8.
Lipopolysaccharide (LPS)-regulated contractility in pericytes may play an important role in mediating pulmonary microvascular fluid hemodynamics during inflammation and sepsis. LPS has been shown to regulate inducible nitric oxide (NO) synthase (iNOS) in various cell types, leading to NO generation, which is associated with vasodilatation. The purpose of this study was to test the hypothesis that LPS can regulate relaxation in lung pericytes and to determine whether this relaxation is mediated through the iNOS pathway. As predicted, LPS stimulated NO synthesis and reduced basal tension by 49% (P < 0.001). However, the NO synthase inhibitors N (omega)-nitro-L-arginine methyl ester, aminoguanidine, and N (omega)-monomethyl-L-arginine did not block the relaxation produced by LPS. In fact, aminoguanidine and N (omega)-monomethyl-L-arginine potentiated the LPS response. The possibility that NO might mediate either contraction or relaxation of the pericyte was further investigated through the use of NO donor compounds; however, neither sodium nitroprusside nor S-nitroso-N-acetylpenicillamine had any significant effect on pericyte contraction. The inhibitory effect of aminoguanidine on LPS-stimulated NO production was confirmed. This ability of LPS to inhibit contractility independent of iNOS was also demonstrated in lung pericytes derived from iNOS-deficient mice. This suggests the presence of an iNOS-independent but as yet undetermined pathway by which lung pericyte contractility is regulated.  相似文献   

9.
Previous studies showed that proanthocyanidins provide potent protection against oxidative stress. Here we investigate the effects of grape seed proanthocyanidin extract (GSPE) as a novel natural antioxidant on the generation and fate of nitric oxide (NO) in rat primary glial cell cultures. GSPE treatment (50 mg/L) increased NO production (measured by NO(2-) assay) by stimulation of the inducible isoform of NOS. However, GSPE failed to affect the LPS/IFN-gamma-induced NO production or iNOS expression. Similar responses were found in the murine macrophage cell line RAW264.7. GSPE did not show any effect on dihydrodichlorofluorescein fluorescence (ROS marker with high sensitivity toward peroxynitrite) either in control or in LPS/IFN-gamma-induced glial cultures even in the presence of a superoxide generator (PMA). GSPE treatment alone had no effect on the basal glutathione (GSH) status in glial cultures. Whereas the microglial GSH level declined sharply after LPS/IFN-gamma treatment, the endogenous GSH pool was protected when such cultures were treated additionally with GSPE, although NO levels did not change. Glial cultures pretreated with GSPE showed higher tolerance toward application of hydrogen peroxide (H(2)O(2)) and tert-butylhydroperoxide. Furthermore, GSPE-pretreated glial cultures showed improved viability after H(2)O(2)-induced oxidative stress demonstrated by reduction in lactate dehydrogenase release or propidium iodide staining. We showed that, in addition to its antioxidative property, GSPE enhances low-level production of intracellular NO in primary rat astroglial cultures. Furthermore, GSPE pretreatment protects the microglial GSH pool during high output NO production and results in an elevation of the H(2)O(2) tolerance in astroglial cells.  相似文献   

10.
Nitric oxide (NO) is formed from arginine in Escherichia coli lipopolysaccharide (LPS) treated rat; however, none of specific cytokine inducing NO generation is yet determined. We studied the effect of interleukin 1 (IL-1) and tumor necrosis factor (TNF) on NO production in rats by detecting NO-hemoglobin in their blood, using electron spin resonance. Either IL-1 or TNF alone stimulated NO-hemoglobin formation. Combined administration of IL-1 and TNF markedly enhanced NO-hemoglobin generation, demonstrating the synergistic character of both stimuli on NO production. Further, LPS and TNF in combination were more potent stimulator of NO-hemoglobin production in rats than each alone.  相似文献   

11.
S Picunio  M Simioni  M G Doni 《Life sciences》1999,65(14):1463-1475
Injection of lipopolysaccharide (LPS) (Salmonella W. Typhosa i.v. bolus) into conscious rats, induced a rapid drop of circulating platelets analogous to that induced by ADP. The animals showed a small fall in mean arterial blood pressure (MABP), an increase in heart rate and a significant increase in plasma nitrite and nitrate level. This result is consistent with the stimulation of an inducible NO synthase (i-NOS). The administration of the stable prostacyclin analogue, iloprost plus ADP or LPS, significantly protected against the decrease in free platelet number induced by ADP or LPS. The plasma nitrite and nitrate level stimulated by LPS was significantly reduced by iloprost and also by prostacyclin. These results are consistent with an inhibition of i-NOS by agents that increase the intracellular level of cAMP. The administration of the NO donor S-Nitroso-N-acyl-D-penicillamine (SNAP) plus ADP or LPS, significantly prevented thrombocytopenia induced by ADP and by LPS. SNAP did not decrease the plasma nitrite and nitrate level stimulated by LPS; furthermore it induced a significant increase of heart rate, without affecting MABP, suggesting a direct accelerating effect of NO on the sino-atrial node. The administration of S-nitroso-glutathione (GSNO), a stable nitrosothiol, plus ADP or LPS, significantly prevented thrombocytopenia induced by ADP but not by LPS. GSNO significantly reduced the plasma nitrite and nitrate level stimulated by LPS. These data demonstrate that the L-Arginine: NO pathway in vivo may be modulated by prostanoids and that compounds which increase cAMP, such as iloprost, are able to protect against LPS-induced early thrombocytopenia.  相似文献   

12.
The synthesis of nitric oxide (NO) is limited by the intracellular availability of L-arginine. Here we show that stimulation of NMDA receptors promotes an increase of intracellular L-arginine which supports an increase in the production of NO. Although L-[3H]arginine uptake measured in cultured chick retina cells incubated in the presence of cycloheximide (CHX, a protein synthesis inhibitor) was inhibited approximately 75% at equilibrium, quantitative thin-layer chromatography analysis showed that free intracellular L-[3H]arginine was six times higher in CHX-treated than in control cultures. Extracellular L-[3H]citrulline levels increased threefold in CHX-treated groups, an effect blocked by NG-nitro-L-arginine, a NO synthase (NOS) inhibitor. NMDA promoted a 40% increase of free intracellular L-[3H]arginine in control cultures, an effect blocked by the NMDA antagonist 2-amino 5-phosphonovaleric acid. In parallel, NMDA promoted a reduction of 40-50% in the incorporation of 35[S]methionine or L-[3H]arginine into proteins. Western blot analysis revealed that NMDA stimulates the phosphorylation of eukaryotic elongation factor 2 (eEF2, a factor involved in protein translation), an effect inhibited by (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK801). In conclusion, we have shown that the stimulation of NMDA receptors promotes an inhibition of protein synthesis and a consequent increase of an intracellular L-arginine pool available for the synthesis of NO. This effect seems to be mediated by activation of eEF2 kinase, a calcium/calmodulin-dependent enzyme which specifically phosphorylates and blocks eEF2. The results raise the possibility that NMDA receptor activation stimulates two different calmodulin-dependent enzymes (eEF2 kinase and NOS) reinforcing local NO production by increasing precursor availability together with NOS catalytic activity.  相似文献   

13.
We have previously shown in rats that lipopolysaccharide (LPS) causes both decreased renal perfusion and kidney arginine production before nitric oxide (NO) synthesis, resulting in a >30% reduction in plasma arginine. To clarify the early phase effects of LPS, we asked the following two questions: 1) is the rapid change in renal arginine production after LPS simply the result of decreased substrate (i.e., citrulline) delivery to the kidney or due to impaired uptake and conversion and 2) is the systemic production of NO limited by plasma arginine availability after LPS? Arterial and renal vein plasma was sampled at 30-min intervals from anesthetized rats with or without citrulline or arginine (2 micromol.min(-1).kg(-1) iv) a dose with no effect on MAP, renal function, or NO production. Exogenous citrulline was quickly converted to arginine by the kidney, resulting in plasma levels similar to equimolar arginine infusion. Also, the increase in citrulline uptake resulted primarily from increased filtered load and reabsorption. In a separate series, citrulline was infused after LPS administration, verifying that citrulline uptake and conversion persists during impaired kidney function. Last, in rats given LPS, the elevation of plasma arginine had no discernable impact on mean arterial pressure, kidney function, or systemic NO production. This work demonstrates how arginine synthesis is normally "substrate limited" and explains how impaired kidney perfusion quickly results in decreased plasma arginine. However, contrary to in vitro studies, the significant reduction in extracellular arginine during the early phase response to LPS in vivo is not functionally rate limiting for NO production.  相似文献   

14.
15.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

16.
We have studied in mice the effect of treatment with exogenous arginine and/or LPS by monitoring serum nitrite/nitrate levels and by investigating the response of cerebellar and liver nitric oxide synthase (NOS). We measured NOS activity in cerebellar extracts while changes in iNOS mRNA were followed in the liver since direct assay of NOS activity proved unreliable with this tissue. In fact, liver and cerebellum extracts were both very active in converting arginine into a citrulline-like metabolite, but only cerebellum conversion was dependent on addition of NADPH and inhibitable by N(G)-methyl-l-arginine. Treatment with LPS, on its own, increased serum nitrite/nitrate levels at 5 and 20 h after injection, while treatment with LPS and arginine produced nitrite/nitrate levels in the serum even greater at 5 h, but significantly lower at 20 h. Liver iNOS mRNA levels were markedly increased by LPS, and this effect was significantly decreased when mice were also given exogenous arginine. A stimulatory effect of LPS was also found on NOS activity in the cerebellum, where a very small stimulation may have also been caused by arginine feeding. These findings indicate that LPS stimulates NOS expression/activity both in the cerebellum and in the liver and suggest a complex pattern of modulation of iNOS by arginine, with NO being first produced in excess and then downregulating iNOS expression.  相似文献   

17.
Lin L  Ding WH  Jiang W  Zhang YG  Qi YF  Yuan WJ  Tang CS 《Peptides》2004,25(11):1977-1984
Urotensin-II (U-II), a cyclic peptide widely expressed in blood vessels, has diverse vascular actions that range from potent vasoconstriction to vasodilation. Although, U-II-induced vasodilation has been shown to be partially dependent on nitric oxide (NO), the involvement of vascular adventitia-derived NO, remains unknown. The present study aimed to elucidate the activation of U-II on L-arginine/NO pathway in isolated rat aortic adventitia. In adventitia of thoracic and abdominal aortas, the l-arginine/NO pathway was similarly characterized: the uptake of l-[(3)H]arginine was Na(+)-independent, with the peak occurring over around 40 min incubation; the total NO synthase (NOS) activity was mostly calcium-independent (>90%), and significantly inhibited by a specific iNOS inhibitor AMT; the production of NO metabolites nitrate and nitrite (NO(x)) was stimulated by L-arginine but not by D-arginine. In aortic adventitia exposed to rat U-II (10(-9) and 10(-8)M) for 6 h, the V(max) of l-[(3)H]arginine uptake over 40 min incubation was significantly increased, while the K(m) of l-[(3)H]arginine uptake showed no significant change. Besides, the iNOS mRNA level was up-regulated, the total NOS activity, largely calcium-independent, was significantly induced, and the NO(x) production was significantly stimulated by U-II. According to the same protocol as U-II, the positive control lipopolysaccharide (LPS, 10 microg/ml), which had been established to activate adventitial L-arginine/NO pathway, increased l-[(3)H]arginine uptake, iNOS activity and NO(x) production to a greater extent than U-II. In addition, the total NOS activities induced by 3 and 6h incubation of U-II and LPS were significantly inhibited by a specific inhibitor of protein synthesis, actinomycin D. In conclusion, the results showed that rat U-II activated L-arginine/NOS/NO pathway in rat aortic adventitia, suggesting a potential contributive role of adventitia-derived NO in the vasodilator response of U-II.  相似文献   

18.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca(2+)-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, L-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated L-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3'-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular L-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the L-arginine transport inhibitor, L-lysine. Basal L-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated L-arginine transport remained unaltered. The increase in L-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

19.
Hypertonic preconditioning inhibits macrophage responsiveness to endotoxin.   总被引:6,自引:0,他引:6  
Hypertonic saline has been shown to modulate cell shape and the response of components of the innate immune response. However, the effect of hypertonic saline on the macrophage remains unknown. We hypothesized that hypertonic preconditioning would impair subsequent inflammatory mediator signaling through a reduction in stress fiber polymerization and mitogen-activated protein kinase activity after LPS stimulation. Rabbit alveolar macrophages were stimulated with 100 ng/ml of LPS. Selected cells were preconditioned with 40-100 mM of NaCl, mannitol, or urea for 4 h and returned to isotonic medium before LPS stimulation. Cellular protein was harvested and subjected to Western blot analysis for the dually phosphorylated active forms of p38 and extracellular signal-related kinase (ERK) 1/2. TNF production was determined by an L929 bioassay, and stress fiber polymerization was evaluated by confocal microscopy. Preconditioning of macrophages with NaCl or mannitol resulted in dose-dependent reduction in ERK 1/2 phosphorylation with no effect on p38 phosphorylation. Urea preconditioning had no effect on either mitogen-activated protein kinase. A dose-dependent attenuation of TNF production was seen with NaCl and mannitol preconditioning (p < 0.05), but not with urea. NaCl and mannitol preconditioning resulted in failure of LPS-induced stress fiber polymerization, whereas urea did not. Extracellular hypertonic conditions (i.e., NaCl and mannitol) have an immunomodulatory effect on macrophages, demonstrated through failure of optimal stress fiber polymerization, ERK 1/2 activity, and TNF production. Intracellular hypertonic conditions (i.e., urea) had no significant effect. Hypertonic saline or mannitol resuscitation, therefore, may help protect against multiple-organ dysfunction syndrome as a result of this reduced proinflammatory responsiveness.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号