首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The large strain mechanical properties of adult porcine gray and white matter brain tissues were measured in shear and confirmed in compression. Consistent with local neuroarchitecture, gray matter showed the least amount of anisotropy, and corpus callosum exhibited the greatest degree of anisotropy. Mean regional properties were significantly distinct, demonstrating that brain tissue is inhomogeneous. Fresh adult human brain tissue properties were slightly stiffer than adult porcine properties but considerably less stiff than the human autopsy data in the literature. Mixed porcine gray/white matter samples were obtained from animals at "infant" and "toddler" stages of neurological development, and shear properties compared to those in the adult. Only the infant properties were significantly different (stiffer) from the adult.  相似文献   

2.

Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood–brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.

  相似文献   

3.

Background

Functional neural networks in the human brain can be studied from correlations between activated gray matter regions measured with fMRI. However, while providing important information on gray matter activation, no information is gathered on the co-activity along white matter tracts in neural networks.

Methodology/Principal Findings

We report on a functional diffusion tensor imaging (fDTI) method that measures task-related changes in fractional anisotropy (FA) along white matter tracts. We hypothesize that these fractional anisotropy changes relate to morphological changes of glial cells induced by axonal activity although the exact physiological underpinnings of the measured FA changes remain to be elucidated. As expected, these changes are very small as compared to the physiological noise and a reliable detection of the signal change would require a large number of measurements. However, a substantial increase in signal-to-noise ratio was achieved by pooling the signal over the complete fiber tract. Adopting such a tract-based statistics enabled us to measure the signal within a practically feasible time period. Activation in the sensory thalamocortical tract and optic radiation in eight healthy human subjects was found during tactile and visual stimulation, respectively.

Conclusions/Significance

The results of our experiments indicate that these FA changes may serve as a functional contrast mechanism for white matter. This noninvasive fDTI method may provide a new approach to study functional neural networks in the human brain.  相似文献   

4.
Dynamic responses of brain tissues are needed for predicting traumatic brain injury (TBI). We modified a dynamic experimental technique for characterizing high strain-rate mechanical behavior of brain tissues. Using the setup, the gray and white matters from bovine brains were characterized under compression to large strains at five different strain rates ranging from 0.01 to 3000/s. The white matter was examined both along and perpendicular to the coronal section for anisotropy characterization. The results show that both brain tissue matters are highly strain-rate sensitive. Differences between the white matter and gray matter in their mechanical responses are recorded. The white matter shows insignificant anisotropy over all strain rates. These results will lead to rate-dependent material modeling for dynamic event simulations.  相似文献   

5.

Background and Purpose

Imaging studies of traumatic brain injury demonstrate that the cerebellum is often affected. We aim to examine fractional anisotropy alteration in acute-phase mild traumatic brain injury patients in cerebellum-related white matter tracts.

Materials and Methods

This prospective study included 47 mild traumatic brain injury patients in the acute stage and 37 controls. MR imaging and neurocognitive tests were performed in patients within 7 days of injury. White matter integrity was examined by using diffusion tensor imaging. We used three approaches, tract-based spatial statistics, graphical-model-based multivariate analysis, and region-of-interest analysis, to detect altered cerebellar white matter integrity in mild traumatic brain injury patients.

Results

Results from three analysis methods were in accordance with each other, and suggested fractional anisotropy in the middle cerebellar peduncle and the pontine crossing tract was changed in the acute-phase mild traumatic brain injury patients, relative to controls (adjusted p-value < 0.05). Higher fractional anisotropy in the middle cerebellar peduncle was associated with worse performance in the fluid cognition composite (r = -0.289, p-value = 0.037).

Conclusion

Altered cerebellar fractional anisotropy in acute-phase mild traumatic brain injury patients is localized in specific regions and statistically associated with cognitive deficits detectable on neurocognitive testing.  相似文献   

6.

Background

Psychotherapy has demonstrated comparable efficacy to antidepressant medication in the treatment of major depressive disorder. Metabolic alterations in the MDD state and in response to treatment have been detected by functional imaging methods, but the underlying white matter microstructural changes remain unknown. The goal of this study is to apply diffusion tensor imaging techniques to investigate psychotherapy-specific responses in the white matter.

Methods

Twenty-one of forty-five outpatients diagnosed with major depression underwent diffusion tensor imaging before and after a four-week course of guided imagery psychotherapy. We compared fractional anisotropy in depressed patients (n = 21) with healthy controls (n = 22), and before-after treatment, using whole brain voxel-wise analysis.

Results

Post-treatment, depressed subjects showed a significant reduction in the 17-item Hamilton Depression Rating Scale. As compared to healthy controls, depressed subjects demonstrated significantly increased fractional anisotropy in the right thalamus. Psychopathological changes did not recover post-treatment, but a novel region of increased fractional anisotropy was discovered in the frontal lobe.

Conclusions

At an early stage of psychotherapy, higher fractional anisotropy was detected in the frontal emotional regulation-associated region. This finding reveals that psychotherapy may induce white matter changes in the frontal lobe. This remodeling of frontal connections within mood regulation networks positively contributes to the “top-down” mechanism of psychotherapy.  相似文献   

7.
Pathak AP  Kim E  Zhang J  Jones MV 《PloS one》2011,6(7):e22643
Knowledge of the three-dimensional (3D) architecture of blood vessels in the brain is crucial because the progression of various neuropathologies ranging from Alzheimer's disease to brain tumors involves anomalous blood vessels. The challenges in obtaining such data from patients, in conjunction with development of mouse models of neuropathology, have made the murine brain indispensable for investigating disease induced neurovascular changes. Here we describe a novel method for "whole brain" 3D mapping of murine neurovasculature using magnetic resonance microscopy (μMRI). This approach preserves the vascular and white matter tract architecture, and can be combined with complementary MRI contrast mechanisms such as diffusion tensor imaging (DTI) to examine the interplay between the vasculature and white matter reorganization that often characterizes neuropathologies. Following validation with micro computed tomography (μCT) and optical microscopy, we demonstrate the utility of this method by: (i) combined 3D imaging of angiogenesis and white matter reorganization in both, invasive and non-invasive brain tumor models; (ii) characterizing the morphological heterogeneity of the vascular phenotype in the murine brain; and (iii) conducting "multi-scale" imaging of brain tumor angiogenesis, wherein we directly compared in vivo MRI blood volume measurements with ex vivo vasculature data.  相似文献   

8.
The use of modern neuroimaging methods to characterize the complex anatomy of brain development at different stages reveals an enormous wealth of information in understanding this highly ordered process and provides clues to detect neurological and neurobehavioral disorders that have their origin in early structural and functional cerebral maturation. Non-invasive diffusion tensor magnetic resonance imaging (DTI) is able to distinguish cerebral microscopic structures, especially in the white matter regions. However, DTI is unable to resolve the complicated neural structure, i.e., the fiber crossing that is frequently observed during the maturation process. To overcome this limitation, several methods have been proposed. One such method, generalized q-sampling imaging (GQI), can be applied to a variety of datasets, including the single shell, multi-shell or grid sampling schemes that are believed to be able to resolve the complicated crossing fibers. Rabbits have been widely used for neurodevelopment research because they exhibit human-like timing of perinatal brain white matter maturation. Here, we present a longitudinal study using both DTI and GQI to demonstrate the changes in cerebral maturation of in vivo developing rabbit brains over a period of 40 weeks. Fractional anisotropy (FA) of DTI and generalized fractional anisotropy (GFA) of GQI indices demonstrated that the white matter anisotropy increased with age, with GFA exhibiting an increase in the hippocampus as well. Normalized quantitative anisotropy (NQA) of GQI also revealed an increase in the hippocampus, allowing us to observe the changes in gray matter as well. Regional and whole brain DTI tractography also demonstrated refinement in fiber pathway architecture with maturation. We concluded that DTI and GQI results were able to characterize the white matter anisotropy changes, whereas GQI provided further information about the gray matter hippocampus area. This developing rabbit brain DTI and GQI database could also be used for educational purposes and neuroscience investigations.  相似文献   

9.
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD.  相似文献   

10.
White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ~85%), surface area (~85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = -0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization.  相似文献   

11.
Role of macrophages during Theiler's virus infection.   总被引:11,自引:8,他引:3       下载免费PDF全文
Theiler's virus, a murine picornavirus, causes a persistent infection of the central nervous system with chronic inflammation and primary demyelination. We examined the nature of infected cells at different times postinoculation (p.i.) with a combined immunocytochemistry-in situ hybridization assay. The virus was found in the gray matter of the brain, mostly in neurons, during the first week p.i. During the following weeks, the virus was present in the spinal cord, first in the gray and white matter, then exclusively in the white matter. Approximately 10% of infected cells were astrocytes at any time during the study. Infected oligodendrocytes were first noticed on day 14 p.i. and amounted to approximately 6% of infected cells. The number of infected macrophages increased with time and reached a plateau by day 21 p.i., when at least 45% of infected cells were macrophages. The role of blood-borne macrophages during infection was studied by depleting them with mannosylated liposomes containing dichloromethylene diphosphonate. The virus did not persist in the majority of the mice treated with liposomes. These mice showed only minimal mononuclear cell infiltration and no demyelination.  相似文献   

12.
The contribution of inflammation to deleterious aging outcomes is increasingly recognized; however, little is known about the complex relationship between interleukin-6 (IL-6) and brain structure, or how this association might change with increasing age. We examined the association between IL-6, white matter integrity, and cognition in 151 community dwelling older adults, and tested whether age moderated these associations. Blood levels of IL-6 and vascular risk (e.g., homocysteine), as well as health history information, were collected. Processing speed assessments were administered to assess cognitive functioning, and we employed tract-based spatial statistics to examine whole brain white matter and regions of interest. Given the association between inflammation, vascular risk, and corpus callosum (CC) integrity, fractional anisotropy (FA) of the genu, body, and splenium represented our primary dependent variables. Whole brain analysis revealed an inverse association between IL-6 and CC fractional anisotropy. Subsequent ROI linear regression and ridge regression analyses indicated that the magnitude of this effect increased with age; thus, older individuals with higher IL-6 levels displayed lower white matter integrity. Finally, higher IL-6 levels were related to worse processing speed; this association was moderated by age, and was not fully accounted for by CC volume. This study highlights that at older ages, the association between higher IL-6 levels and lower white matter integrity is more pronounced; furthermore, it underscores the important, albeit burgeoning role of inflammatory processes in cognitive aging trajectories.  相似文献   

13.
脑白质疏松症发病率逐渐增高,其相关的神经功能障碍严重影响生活质量,因此早期发现LA患者存在的隐匿性损伤对早期治疗及预防有重要临床意义。LA的病理生理学特点为血管内皮细胞的受损引起血管通透性的改变,从而使周围组织的弥散程度发生改变,细胞外水分子运动对信号的改变起主导作用。DTI是目前检测脑白质唯一的无创性方法,可从量和方向上反映成像的体素内水分子扩散的变化,可以测量组织中扩散的各向异性。DTI较传统的MR能更好的反应神经系统白质的超微结构的改变,为影像学与其病理生理的相关性研究提供新的方法。目前对脑白质疏松的研究主要集中在与神经功能相关区域DTI量化指标的改变,因此本文对脑白质疏松的DTI技术的应用及发展趋势进行综述。  相似文献   

14.

Background

White matter (WM) fibers connect different brain regions and are critical for proper brain function. However, little is known about the cerebral blood flow in WM and its relation to WM microstructure. Recent improvements in measuring cerebral blood flow (CBF) by means of arterial spin labeling (ASL) suggest that the signal in white matter may be detected. Its implications for physiology needs to be extensively explored. For this purpose, CBF and its relation to anisotropic diffusion was analyzed across subjects on a voxel-wise basis with tract-based spatial statistics (TBSS) and also across white matter tracts within subjects.

Methods

Diffusion tensor imaging and ASL were acquired in 43 healthy subjects (mean age = 26.3 years).

Results

CBF in WM was observed to correlate positively with fractional anisotropy across subjects in parts of the splenium of corpus callosum, the right posterior thalamic radiation (including the optic radiation), the forceps major, the right inferior fronto-occipital fasciculus, the right inferior longitudinal fasciculus and the right superior longitudinal fasciculus. Furthermore, radial diffusivity correlated negatively with CBF across subjects in similar regions. Moreover, CBF and FA correlated positively across white matter tracts within subjects.

Conclusion

The currently observed findings on a macroscopic level might reflect the metabolic demand of white matter on a microscopic level involving myelination processes or axonal function. However, the exact underlying physiological mechanism of this relationship needs further evaluation.  相似文献   

15.

Background

Strabismus is a disorder in which the eyes are misaligned. Persistent strabismus can lead to stereopsis impairment. The effect of strabismus on human brain is not unclear. The present study is to investigate whether the brain white structures of comitant exotropia patients are impaired using combined T1-weighted imaging and diffusion tensor imaging (DTI).

Principal Findings

Thirteen patients with comitant strabismus and twelve controls underwent magnetic resonance imaging (MRI) with acquisition of T1-weighted and diffusion tensor images. T1-weighted images were used to analyze the change in volume of white matter using optimized voxel-based morphology (VBM) and diffusion tensor images were used to detect the change in white matter fibers using voxel-based analysis of DTI in comitant extropia patients. VBM analysis showed that in adult strabismus, white matter volumes were smaller in the right middle occipital gyrus, right occipital lobe/cuneus, right supramarginal gyrus, right cingulate gyrus, right frontal lobe/sub-gyral, right inferior temporal gyrus, left parahippocampa gyrus, left cingulate gyrus, left occipital lobe/cuneus, left middle frontal gyrus, left inferior parietal lobule, and left postcentral gyrus, while no brain region with greater white matter volume was found. Voxel-based analysis of DTI showed lower fractional anisotropy (FA) values in the right middle occipital gyrus and right supramarginal gyrus in strabismus patients, while brain region with increased FA value was found in the right inferior frontal gyrus.

Conclusion

By combining VBM and voxel-based analysis of DTI results, the study suggests that the dorsal visual pathway was abnormal or impaired in patients with comitant exotropia.  相似文献   

16.
Diffusion-weighted magnetic resonance imaging (MRI) provides information about tissue water diffusion. Diffusion anisotropy, which can be measured with diffusion tensor MRI, is a quantitative measure of the directional dependence of the diffusion restriction that is introduced by biological structures such as nerve fibers. Diffusion tensor MRI data was obtained in the brain, brain stem, and cervical spinal cord. For each region, scans were performed in four normal volunteers. Fractional anisotropy (FA), an index of diffusion anisotropy, was measured within regions of interest located in the corpus callosum, capsula interna, thalamus, caudate nucleus, putamen, brain cortex, pyramidal tract of the medulla, accessory olivary nucleus, dorsal olivary nucleus, inferior olivary nucleus, spinal white and gray matter. The highest FA value was measured in the corpus callosum (81 +/- 3%). The values of the other areas decreased in the following order: pyramidal tract in the medulla (72 +/- 1%), spinal white matter (65 +/- 4%), capsula interna (62 +/- 3%), accessory olivary nucleus (36 +/- 2%), spinal gray matter (35 +/- 5%), dorsal olivary nucleus in the medulla (29 +/- 2%), thalamus (28 +/- 2%), inferior olivary nucleus (15 +/- 2%), putamen (13 +/- 2%), caudate nucleus (13 +/- 2%), and brain cortex (9 +/- 1%). Our results indicate that the underlying fiber architecture, fiber density, and uniformity of nerve fiber direction affect anisotropy values of the various structures. Characterization of various central nervous system structures with diffusion anisotropy is possible and may be useful to monitor degenerative diseases in the central nervous system.  相似文献   

17.

Objectives

Perivascular spaces are associated with MRI markers of cerebral small vessel disease, including white matter hyperintensities. Although perivascular spaces are considered to be an early MRI marker of cerebral small vessel disease, it is unknown whether they are associated with further progression of MRI markers, especially white matter hyperintensities. We determined the association between perivascular spaces and progression of white matter hyperintensities after 2-year follow-up in lacunar stroke patients.

Methods

In 118 lacunar stroke patients we obtained brain MRI and 24-hour ambulatory blood pressure measurements at baseline, and a follow-up brain MRI 2 years later. We visually graded perivascular spaces and white matter hyperintensities at baseline. Progression of white matter hyperintensities was assessed using a visual white matter hyperintensity change scale. Associations with white matter hyperintensity progression were tested with binary logistic regression analysis.

Results

Extensive basal ganglia perivascular spaces were associated with progression of white matter hyperintensities (OR 4.29; 95% CI: 1.28–14.32; p<0.05), after adjustment for age, gender, 24-hour blood pressure and vascular risk factors. This association lost significance after additional adjustment for baseline white matter hyperintensities. Centrum semiovale perivascular spaces were not associated with progression of white matter hyperintensities.

Conclusions

Our study shows that extensive basal ganglia perivascular spaces are associated with progression of white matter hyperintensities in cerebral small vessel disease. However, this association was not independent of baseline white matter hyperintensities. Therefore, presence of white matter hyperintensities at baseline remains an important determinant of further progression of white matter hyperintensities in cerebral small vessel disease.  相似文献   

18.
Advances in brain connectomics set the need for detailed knowledge of functional properties of myelinated and non-myelinated (if present) axons in specific white matter pathways. The corpus callosum (CC), a major white matter structure interconnecting brain hemispheres, is extensively used for studying CNS axonal function. Unlike another widely used CNS white matter preparation, the optic nerve where all axons are myelinated, the CC contains also a large population of non-myelinated axons, making it particularly useful for studying both types of axons. Electrophysiological studies of optic nerve use suction electrodes on nerve ends to stimulate and record compound action potentials (CAPs) that adequately represent its axonal population, whereas CC studies use microelectrodes (MEs), recording from a limited area within the CC. Here we introduce a novel robust isolated "whole" CC preparation comparable to optic nerve. Unlike ME recordings where the CC CAP peaks representing myelinated and non-myelinated axons vary broadly in size, "whole" CC CAPs show stable reproducible ratios of these two main peaks, and also reveal a third peak, suggesting a distinct group of smaller caliber non-myelinated axons. We provide detailed characterization of "whole" CC CAPs and conduction velocities of myelinated and non-myelinated axons along the rostro-caudal axis of CC body and show advantages of this preparation for comparing axonal function in wild type and dysmyelinated shiverer mice, studying the effects of temperature dependence, bath-applied drugs and ischemia modeled by oxygen-glucose deprivation. Due to the isolation from gray matter, our approach allows for studying CC axonal function without possible "contamination" by reverberating signals from gray matter. Our analysis of "whole" CC CAPs revealed higher complexity of myelinated and non-myelinated axonal populations, not noticed earlier. This preparation may have a broad range of applications as a robust model for studying myelinated and non-myelinated axons of the CNS in various experimental models.  相似文献   

19.
20.

Background

Chronic stimulant abuse is associated with both impairment in decision making and structural abnormalities in brain gray and white matter. Recent data suggest these structural abnormalities may be related to functional impairment in important behavioral processes.

Methodology/Principal Findings

In 15 cocaine-dependent and 18 control subjects, we examined relationships between decision-making performance on the Iowa Gambling Task (IGT) and white matter integrity as measured by diffusion tensor imaging (DTI). Whole brain voxelwise analyses showed that, relative to controls, the cocaine group had lower fractional anisotropy (FA) and higher mean of the second and third eigenvalues (λ⊥) in frontal and parietal white matter regions and the corpus callosum. Cocaine subjects showed worse performance on the IGT, notably over the last 40 trials. Importantly, FA and λ⊥ values in these regions showed a significant relationship with IGT performance on the last 40 trials.

Conclusions

Compromised white matter integrity in cocaine dependence may be related to functional impairments in decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号