首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C G Janson  M J During 《Genomics》2001,78(1-2):3-6
Over the past decade, viral vectors have slowly gained mainstream acceptance in the neuroscience and genetics communities for the in vivo study of gene function [1]. Using stereotactic techniques, it is possible to characterize neuroanatomical relationships through the delivery of neurotropic viral vectors to specific brain regions. More sophisticated studies combine viral vectors with other methods of genetic manipulation such as germline transgenic mice. As more is learned about the properties of different viral vectors, it has become possible to use viral vectors to test hypotheses about the function of genes, through targeted in vivo delivery to the central nervous system (CNS). The effects of gene expression in the brain can be measured on the molecular, biochemical, electrophysiological, morphological, and behavioral levels. We propose that viral vectors should be considered as part of an integrated functional genomics platform in the CNS.  相似文献   

2.
Darwin provided a great unifying theory for biology; its visual expression is the universal tree of life. The tree concept is challenged by the occurrence of horizontal gene transfer and—as summarized in this review—by the omission of viruses. Microbial ecologists have demonstrated that viruses are the most numerous biological entities on earth, outnumbering cells by a factor of 10. Viral genomics have revealed an unexpected size and distinctness of the viral DNA sequence space. Comparative genomics has shown elements of vertical evolution in some groups of viruses. Furthermore, structural biology has demonstrated links between viruses infecting the three domains of life pointing to a very ancient origin of viruses. However, presently viruses do not find a place on the universal tree of life, which is thus only a tree of cellular life. In view of the polythetic nature of current life definitions, viruses cannot be dismissed as non-living material. On earth we have therefore at least two large DNA sequence spaces, one represented by capsid-encoding viruses and another by ribosome-encoding cells. Despite their probable distinct evolutionary origin, both spheres were and are connected by intensive two-way gene transfers.  相似文献   

3.
In this post-genomic era, we need to define gene function on a genome-wide scale for model organisms and humans. The fundamental unit of biological processes is the cell. Among the most powerful tools to assay such processes in the physiological context of intact living cells are fluorescence microscopy and related imaging techniques. To enable these techniques to be applied to functional genomics experiments, fluorescence microscopy is making the transition to a quantitative and high-throughput technology.  相似文献   

4.
Global soybean production is frequently impacted by various stresses, including both abiotic and biotic stresses. To develop soybean plants with enhanced tolerance to different stressors, functional genomics of soybean and a comprehensive understanding of available biotechnological resources and approaches are essential. In this review, we will discuss recent advances in soybean functional genomics which provide unprecedented opportunities to understand global patterns of gene expression, gene regulatory networks, various physiological, biochemical, and metabolic pathways as well as their association with the development of specific phenotypes. Soybean functional genomics, therefore, will ultimately enable us to develop new soybean varieties with improved productivity under adverse conditions by genetic engineering.  相似文献   

5.
Viruses are the most abundant biological entities on Earth and have fundamental ecological roles in controlling microbial communities. Yet, although their diversity is being increasingly explored, little is known about the extent of viral interactions with their protist hosts as most studies are limited to a few cultivated species. Here, we exploit the potential of single‐cell genomics to unveil viral associations in 65 individual cells of 11 essentially uncultured stramenopiles lineages sampled during the Tara Oceans expedition. We identified viral signals in 57% of the cells, covering nearly every lineage and with narrow host specificity signal. Only seven out of the 64 detected viruses displayed homologies to known viral sequences. A search for our viral sequences in global ocean metagenomes showed that they were preferentially found at the DCM and within the 0.2–3 µm size fraction. Some of the viral signals were widely distributed, while others geographically constrained. Among the viral signals we detected an endogenous mavirus virophage potentially integrated within the nuclear genome of two distant uncultured stramenopiles. Virophages have been previously reported as a cell's defence mechanism against other viruses, and may therefore play an important ecological role in regulating protist populations. Our results point to single‐cell genomics as a powerful tool to investigate viral associations in uncultured protists, suggesting a wide distribution of these relationships, and providing new insights into the global viral diversity.  相似文献   

6.
Respect for human life--a notion of worth uniting all members of the human race--constitutes a sense of anthropocentrism that has long been the justification for the enrollment of animals in experimentation executed to develop therapies to alleviate human suffering. Currently, however, advances in functional genomics are causing a qualitative transformation of the rationale for medical research performed on animals. The notion of human distinctness is being fundamentally challenged when gene sequences similar to those found in humans are identified in different species. In this Opinion article, we would like to highlight an inherent tension brought about by the current developments in functional genomics: a tension between the scientific and the ethical status of gene sequences. Is it reasonable to argue that they are the same for all practical purposes but different in ethical status?  相似文献   

7.
Despite its high economic importance, little is known about rose genetics, genome structure, and the function of rose genes. Reasons for this lack of information are polyploidy in most cultivars, simple breeding strategies, high turnover rates for cultivars, and little public funding. Molecular and biotechnological tools developed during the genomics era now provide the means to fill this gap. This will be facilitated by a number of model traits as e.g., a small genome, a large genetic diversity including diploid genotypes, a comparatively short generation time and protocols for genetic engineering. A deeper understanding of genetic processes and the structure of the rose genome will serve several purposes: Applications to the breeding process including marker-assisted selection and direct manipulation of relevant traits via genetic engineering will lead to improved cultivars with new combinations of characters. In basic research, unique characters, e.g., the biosynthesis and emission of particular secondary metabolites will provide new information not available in model species. Furthermore comparative genomics will link information about the rose genome to ongoing projects on other rosaceous crops and will add to our knowledge about genome evolution and speciation. This review is intended as a presentation and is the compilation of the current knowledge on rose genetics and genomics, including functional genomics and genetic engineering. Furthermore, it is intended to show ways how knowledge on rose genetics and genomics can be linked to other species in the Rosaceae in order to utilize this information across genera.  相似文献   

8.
In 2011, the Gibbs Conference on Biothermodynamics will celebrate its 25th anniversary. Since the inaugural meeting in 1987, it has brought together laboratories that lived, breathed and argued about the molecular logic of macromolecular machines. The participants have a deep commitment to understanding the nature of physico-chemical forces that govern regulation of biological systems, and share a passion for applying linkage theory. The collective goal is to understand how ligand binding, subunit assembly and conformational change drive what we observe as physiological processes such as regulated transport, enzyme cascades, gene regulation, membrane permeability, viral infection, intracellular trafficking and folding of macromolecules.In this special issue, articles by former organizers of the Gibbs Conference showcase the current breadth and depth of the field of biothermodynamics, and how thoroughly it is integrated with the study of macromolecular structures, computational modeling and physiological studies of human health and disease.  相似文献   

9.
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize–microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize–microbe interactions and more broadly in the context of the monocot functional genomics toolbox.  相似文献   

10.
RNA interference is an exciting field of functional genomics that can silence viral genes. This property of interfering RNA can be used to combat viral diseases of plants as well as animals and humans. It is a short sequence of nucleic acid that can bind to the mRNA of the gene and interferes the process of its expression. It is diverse in occurrence as well as in applications. It occurs from nematodes to fungi and can cause gene silencing in plants, animals and human beings. Small interfering RNAs are used to silence plant viral genes and in production of therapeutic drugs against Hepatitis or Immuno-deficiency viruses in human. In this review, we will discuss the history, mechanism and applications of RNA interference in plant, animal and human research.  相似文献   

11.
New non-viral method for gene transfer into primary cells   总被引:7,自引:0,他引:7  
The availability of genetically altered cells is an essential prerequisite for many scientific and therapeutic applications including functional genomics, drug development, and gene therapy. Unfortunately, the efficient gene transfer into primary cells is still problematic. In contrast to transfections of most cell lines, which can be successfully performed using a variety of methods, the introduction of foreign DNA into primary cells requires a careful selection of gene transfer techniques. Whereas viral strategies are time consuming and involve safety risks, non-viral methods proved to be inefficient for most primary cell types. The Nucleofector technology is a novel gene transfer technique designed for primary cells and hard-to-transfect cell lines. This non-viral gene transfer method is based on a cell type specific combination of electrical parameters and solutions. In this report, we show efficient transfer of DNA expression vectors and siRNA oligonucleotides into a variety of primary cell types from different species utilizing the Nucleofector technology, including human B-CLL cells, human CD34+ cells, human lymphocytes, rat cardiomyocytes, human, porcine, and bovine chondrocytes, and rat neurons.  相似文献   

12.
近十年来,生理学与基因组学达到了空前的融合。尽管生理基因组学还是一个非常年轻的研究领域,系统生物学概念的引入必将推进生理基因组学达到全新的水平。本文概要地叙述了这个令人振奋的生理科学的新时代给生理学家带来的机遇和挑战,并以我们自己近十年来的经验为例,讨论了怎样通过扩展和延伸生理学与基因组学的结合,从而对生物学得到系统的理解。  相似文献   

13.
This paper analyses the ways in which genomic knowledge is portrayed as useful knowledge in gene patenting in order to fulfil the 'utility'/'industrial applicability' requirement for patentability. It gives examples of utility claims in gene patents and asks whether genomics (as opposed to genetics) changes our ideas about what is useful and what can be patented. It puts forward a provisional classification of different types of utility and argues that merely identifying the physiological function of a gene diverges radically from our commonsense understanding of what it is for an invention to be useful. Furthermore, social, political and ethical issues inevitably arise when discussing the utility requirement, because an invention cannot be useful in isolation from a social context.  相似文献   

14.
Brazil has one of the highest rates of scientific production, occupying the ninth position among countries with genome-sequencing projects. Considering the rapid development of this research area and the diversity of professionals involved, the present study aims to understand the expectations, past experiences and the current scenario of Brazilian research in bioinformatics and genomics. The present research was carried out by analyzing the perceptions of 576 researchers in genomics and bioinformatics in Brazil through content and sentiment analysis techniques. This group of participants is equivalent to 48% of the members of the research community. The results suggest that most researchers have a positive perception of the potential of this research area. However, there is concern about the lack of funding for investing in equipment and professional training. As part of a wish list for the future, researchers highlighted the need for higher funding, formal education, and collaboration among research networks. When asked about genomics and bioinformatics in other countries, the participants recognize that sequencing technologies and infrastructure are more accessible, allowing better data volume expansion.  相似文献   

15.
This paper analyses the ways in which genomic knowledge is portrayed as useful knowledge in gene patenting in order to fulfil the ‘utility’/‘industrial applicability’ requirement for patentability. It gives examples of utility claims in gene patents and asks whether genomics (as opposed to genetics) changes our ideas about what is useful and what can be patented. It puts forward a provisional classification of different types of utility and argues that merely identifying the physiological function of a gene diverges radically from our commonsense understanding of what it is for an invention to be useful. Furthermore, social, political and ethical issues inevitably arise when discussing the utility requirement, because an invention cannot be useful in isolation from a social context.  相似文献   

16.
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vector's preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis.  相似文献   

17.
Chromosomal editing constitutes the direct and specific modification of the genetic information present in the chromosome. In the bacterium Escherichia coli, strategies were originally developed for the production of specific proteins, the genotypic improvement of strains, and the analysis of regulation of gene expression. However, with the emerging field of metabolic engineering and genomics, efficient means of targeting specific genetic mutations into the chromosome are most useful. In this review, a summary of the systems currently available to generate insertions and deletions in the chromosome of E. coli are presented, as well as the current knowledge about the genetic mechanisms responsible for these processes.  相似文献   

18.
19.
The relaxin gene family is a group of genes involved in different physiological roles, most of them related to reproduction. In vertebrates the genes in this family are located in three separate chromosomal locations, and have been called relaxin family locus (RFL) A, B, and C. Among mammals the RFLA and RFLC are the most conserved as no gene copy-number variation has been observed thus far. The RFLB locus is also conserved on most mammals other than primates, where there are several gene gains and losses. Interestingly, the relaxin gene found on the RFLB locus in the European rabbit has acquired a novel role. In addition to the classical reproductive roles, this gene is expressed in tracheobronchial epithelial cells and its expression has been linked to squamous differentiation. We reconstructed the evolutionary history of the European rabbit RFLB locus using the tools of comparative genomics and molecular evolution. We found that the European rabbit possess a RFLB locus which is unique among mammals in that there are five tandemly arranged relaxin gene copies, which contrast with the single relaxin copy gene found in most mammals. In addition we also found that the ancestral pre-duplication gene was subject to the action of positive selection, and several amino acid sites were identified under the action of natural selection including the sites B12 and B13 which are part of the receptor recognition and binding site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号