首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystals of 5-fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)A, alpha = gamma = 90 degrees, beta = 96.70 degrees (1), space group P2(1), Z = 2, rho obs = 1.56 gm/c.c and rho calc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I > or = 3sigma). The nucleoside has the anti conformation [chi = 53.1(4) degrees] with the furanose ring in the favorite C2'-endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and -69.3(4) degrees for phi(theta c) and phi (infinity) respectively. The pseudorotational amplitude tau(m) is 34.5 (2) with a phase angle of 171.6(4) degrees. The crystal structure is stabilized by a network of N-H...O and O-H...O involving the N3 of the uracil base and the sugar 03' and 02' as donors and the 02 and 04 of the uracil base and 03' oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5-fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [chi varies from -20 to + 60 degrees] 2) an inverse correlation between the glycosyl bond distance and the chi angle 3) a wide variation of conformations of the sugar ranging froni C2'-endo through C3'-endo to C4'-exo 4) the preferred g+ across the exocyclic C4'-C5' bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

2.
The crystal and molecular structure of a synthetic mannosyl disaccharide, methyl O-alpha-D-mannopyranosyl-(1----2)-alpha-D-mannopyranoside, has been determined from X-ray diffractometer data by direct methods by use of the Multan programs. The crystals are monoclinic, space group P2 with unit cell dimensions, a 8.086(1), b 9.775(1), c 9.975(2) A, beta 104.58(1) degrees, Z 2, and Dm 1.54 g/cm3. The structure was refined to an R-value of 0.033 for 1359 reflections measured with CuK alpha radiation. The mannopyranose units have the chair conformations 4C(D) with C-5' and C-2' deviating from the best plane through the other four atoms of the ring by -0.68 and +0.53 A in the nonreducing group, and C-3 and O-5 deviating from the mean plane through the other four atoms by +0.57 and -0.66 A, respectively, in the "potentially" reducing residue. The ring-to-ring conformation can be described as (phi, psi) = (-64.5, 105.5 degrees). The conformation across the C-5--C-6 bond is gauche-gauche in both the sugars. The crystal structure is stabilized by a network of intermolecular O-H...O hydrogen bonds.  相似文献   

3.
The crystal structure of beta-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose (alpha-cellobiose) in a complex with water and NaI was determined with Mo K(alpha) radiation at 150 K to R=0.027. The space group is P2(1) and unit cell dimensions are a=9.0188, b=12.2536, c=10.9016 A, beta=97.162 degrees. There are no direct hydrogen bonds among cellobiose molecules, and the usual intramolecular hydrogen bond between O-3 and O-5' is replaced by a bridge involving Na+, O-3, O-5', and O-6'. Both Na+ have sixfold coordination. One I(-) accepts six donor hydroxyl groups and three C-H***I(-) hydrogen bonds. The other accepts three hydroxyls, one Na+, and five C-H***I(-) hydrogen bonds. Linkage torsion angles phi(O-5) and psi(C-5) are -73.6 and -105.3 degrees, respectively (phi(H)=47.1 degrees and psi(H)=14.6 degrees ), probably induced by the Na+ bridge. This conformation is in a separate cluster in phi,psi space from most similar linkages. Both C-6-O-H and C-6'-O-H are gg, while the C-6'-O-H groups from molecules not in the cluster have gt conformations. Hybrid molecular mechanics/quantum mechanics calculations show <1.2 kcal/mol strain for any of the small-molecule structures. Extrapolation of the NaI cellobiose geometry to a cellulose molecule gives a left-handed helix with 2.9 residues per turn. The energy map and small-molecule crystal structures imply that cellulose helices having 2.5 and 3.0 residues per turn are left-handed.  相似文献   

4.
The crystal structure of the tripeptide t-Boc-L-Pro-D-Ala-D-Ala-NHCH3, monohydrate, (C17H30N4O5.H2O, molecular weight = 404.44) has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P2(1), a = 9.2585(4), b = 9.3541(5), c = 12.4529(4)A, beta = 96.449(3) degrees, Z = 2. The peptide units are in the trans and the tBoc-Pro bond in the cis orientation. The first and third peptide units show significant deviations from planarity (delta omega = 5.2 degrees and delta omega = 3.7 degrees, respectively). The backbone torsion angles are: phi 1 = -60 degrees, psi 1 = 143.3 degrees, omega 1 = -174.8 degrees, phi 2 = 148.4 degrees, psi 2 = -143.1 degrees, omega 2 = -179.7 degrees, phi 3 = 151.4 degrees, psi 3 = -151.9 degrees, omega 3 = -176.3 degrees. The pyrrolidine ring of the proline residue adopts the C2-C gamma conformation. The molecular packing gives rise to an antiparallel beta-sheet structure formed of dimeric repeating units of the peptide. The surface of the dimeric beta-sheet is hydrophobic. Water molecules are found systematically at the edges of the sheets interacting with the urethane oxygen and terminal amino groups. Surface catalysis of an L-Ala to D-Ala epimerization process by water molecules adsorbed on to an incipient beta-sheet is suggested as a mechanism whereby crystals of the title peptide were obtained from a solution of tBoc-Pro-D-Ala-Ala-NHCH3.  相似文献   

5.
The cellulose model compound methyl 4-O-methyl-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside (6) was synthesised in high overall yield from methyl beta-D-cellobioside. The compound was crystallised from methanol to give colourless prisms, and the crystal structure was determined. The monoclinic space group is P2(1) with Z=2 and unit cell parameters a=6.6060 (13), b=14.074 (3), c=9.3180 (19) A, beta=108.95(3) degrees. The structure was solved by direct methods and refined to R=0.0286 for 2528 reflections. Both glucopyranoses occur in the 4C(1) chair conformation with endocyclic bond angles in the range of standard values. The relative orientation of both units described by the interglycosidic torsional angles [phi (O-5' [bond] C-1' [bond] O-4 [bond] C-4) -89.1 degrees, Phi (C-1' [bond] O-4 [bond] C-4 [bond] C-5) -152.0 degrees] is responsible for the very flat shape of the molecule and is similar to those found in other cellodextrins. Different rotamers at the exocyclic hydroxymethyl group for both units are present. The hydroxymethyl group of the terminal glucose moiety displays a gauche-trans orientation, whereas the side chain of the reducing unit occurs in a gauche-gauche conformation. The solid state (13)C NMR spectrum of compound 6 exhibits all 14 carbon resonances. By using different cross polarisation times, the resonances of the two methyl groups and C-6 carbons can easily be distinguished. Distinct differences of the C-1 and C-4 chemical shifts in the solid and liquid states are found.  相似文献   

6.
The crystal structure of galactinol dihydrate has been determined by X-ray diffraction. The crystal belongs to the orthorhombic system, space group P2(1)2(1)2, a = 15.898(6), b = 19.357(5), c = 5.104(4) A, and Z = 4. The structure was refined to R = 0.044 for 1818 observed structure amplitudes. The primary hydroxyl group exhibits twofold orientational disorder. The linkage conformation is close to those of alpha-(1 --> 4) linkages in methyl alpha-maltotrioside tetrahydrate and erlose trihydrate. Although there is no interring hydrogen bond in galactinol, an indirect interring hydrogen bond including a water molecule is present. The observed conformation is additionally stabilized by the indirect interring hydrogen bond. The global minimum in the relaxed-residue energy map based on the MM3(92) force-field is close to the observed conformation in the crystal structure. All hydroxyl, ring and water oxygen atoms are involved in a complex three-dimensional hydrogen-bonding network.  相似文献   

7.
The synthetic peptide Gly-L-Ala-L-Val (C10H19N3O4.3H2O; GAV) crystallizes in the monoclinic space group P21, with a = 8.052(2), b = 6.032(2), c = 15.779(7) A, beta = 98.520(1) degree, V = 757.8 A3, Dx = 1.312 g cm-3, and Z = 2. The peptide Gly-L-Ala-L-Leu (C11H21N3O4.3H2O; GAL) crystallizes in the orthorhombic space group P212121, with a = 6.024(1), b = 8.171(1), c = 32.791(1) A, V = 1614 A3, Dx = 1.289 g cm-3, and Z = 4. Their crystal structures were solved by direct methods using the program SHELXS-86, and refined to an R index of 0.05 for 1489 reflections for GAV and to an R index of 0.05 for 1563 reflections for GAL. The tripeptides exist as a zwitterion in the crystal and assume a near alpha-helical backbone conformation with the following torsion angles: psi 1 = -150.7 degrees; phi 2, psi 2 = -68.7 degrees, -38.1 degrees; phi 3, psi 32 = -74.8 degrees, -44.9 degrees, 135.9 degrees for GAV; psi 1 = -150.3 degrees; phi 2, psi 2 = -67.7 degrees, -38.9 degrees; phi 3, psi 31, psi 32 = -72.2 degrees, -45.3 degrees, 137.5 degrees for GAL. Both the peptide units in both of the tripeptides show significant deviation from planarity [omega 1 = -171.3(6) degrees and omega 2 = -172.0(6) degrees for GAV; omega 1 = -171.9(5) degrees and omega 2 = -173.2(6) degrees for GAL]. The side-chain conformational angles chi 21 and chi 22 are -61.7(5) degrees and 175.7(5) degrees, respectively, for valine, and the side-chain conformations chi 12 and chi 23's are -68.5(5) degrees and (-78.4(6) degrees, 159.10(5) degrees) respectively, for leucine. Each of the tripeptide molecule is held in a near helical conformation by a water molecule that bridges the NH3+ and COO- groups, and acts as the fourth residue needed to complete the turn by forming two hydrogen bonds. Two other water molecules form intermolecular hydrogen bonds in stabilizing the helical structure so that the end result is a column of molecules that looks like an alpha-helix.  相似文献   

8.
The peptide Boc-L-Val-deltaPhe-deltaPhe-L-Ile-OCH3 was synthesized using the azlactone method in the solution phase, and its crystal and molecular structures were determined by X-ray diffraction. Single crystals were grown by slow evaporation from solution in methanol at 25 degrees C. The crystals belong to an orthorhombic space group P2(1)2(1)2(1) with a = 12.882(7) A, b = 15.430(5) A, c = 18.330(5) A and Z = 4. The structure was determined by direct methods and refined by a least-squares procedure to an R-value of 0.073. The peptide adopts a right-handed 3(10)-helical conformation with backbone torsion angles: phi1 = 56.0(6)degrees, psi1 = -38.0(6)degrees, phi2 = -53.8(6)degrees, psi2 = 23.6(6)degrees, phi3 = -82.9(6)degrees, psi3 = -10.6(7)degrees, phi4 = 124.9(5)degrees. All the peptide bonds are trans. The conformation is stabilized by intramolecular 4-->1 hydrogen bonds involving Boc carbonyl oxygen and NH of deltaPhe3 and CO of Val1 and NH of Ile4. It is noteworthy that the two other chemically very similar peptides: Boc-Val-deltaPhe-deltaPhe-Ala-OCH3 (i) and Boc-Val-deltaPhe-deltaPhe-Val-OCH3 (ii) with differences only at the fourth position have been found to adopt folded conformations with two overlapping beta-turns of types II and III', respectively, whereas the present peptide adopts two overlapping beta-turns of type III. Thus the introduction of Ile at fourth position in a sequence Val-deltaPhe-deltaPhe-X results in the formation of a 3(10)-helix. The crystal structure is stabilized by intermolecular hydrogen bonds involving NH of Val1 and carbonyl oxygen of a symmetry related (-x, y - 1/2, 1/2 + z) deltaPhe2 and NH of deltaPhe2 with carbonyl oxygen of a symmetry related (x, y1/2, 1/2 + z) Ile4. This gives rise to long columns of helical molecules linked head to tail running along [010] direction.  相似文献   

9.
PCILO (Perturbative Configuration Interaction using Localised Orbitals) computations have been carried out for three 6-azapyrimidine nucleosides, 6-azauridine, 6-azacytidine and 6-azathymidine, for both C(2')-endo and C(3')-endo pucker of the sugar ring. The results indicate a syn (chiCN=180 degrees) conformation followed by chiCN=90 degrees and gg conformation for C(3')-endo 6-aza analogs as compareed to the anti (chiCN=0 degrees) and gg conformation preferred by the corresponding pyrimidine nucleosides. For C(2')-endo sugar geometry, 6-azauridine and 6-azacytidine prefer, respectively, chiCN=0 degrees (anti) and phi C(4')-C(5')=60 degrees C (gg) and chiCN-240 degrees (syn) and phi C(4')-C(5')=120 degrees. The corresponding nucleosides, uridine and cytidine, show a preference for syn (chiCN=240 degrees) and gg and anti(chiCN=0 degrees) and gg , respectively. The X-ray crystallographic conformations of 6-azauridine and 6-azacytidine have been attributed to intermolecular hydrogen bonding and crystal packing forces. The results of PMR, CD and ORD studies on 6-azauridine and 6-azacytidine in aqueous solutions are in agreement with the PCILO predictions.  相似文献   

10.
The crystal structures of two nucleosides, 5-carbamoylmethyluridine (1) and 5-carboxymethyluridine (2), were determined from three-dimensional x-ray diffraction data, and refined to R = 0.036 and R = 0.047, respectively. Compound 1 is in the C3'-endo conformation with chi +5.2 degrees (anti), psiinfinity = +63.4 degrees and psialpha = +180.0 degrees (tt); 2 is in the C2'endo conformation with chi +49.4 degrees (anti), psiinfinity -60.5 degrees and psialpha +60.0 degrees (gg). For each derivative, the plane of the side chain substituent is skewed with respect to the plane of the nucleobase; for 1, the carboxamide group is on the same side of the uracil plane vis a vis the ribose ring; for 2, the carboxyl group is on the opposite side of this plane. No base pairing is observed for either structure. Incorporation of structure 1 into a 3'-stacked tRNA anticodon appears to place 08 within hydrogen bonding distance of the 02' hydroxyl of ribose 33, which may limit the ability of such a molecule of tRNA to "wobble".  相似文献   

11.
The solution conformation of model compounds for the tri'-antennary and tetraantennary (six-arm) branch point of N-linked glycans has been determined through the use of chemical shift, relaxation, and nuclear Overhauser enhancement data. The object was to establish the conformation about the glycosidic linkages in the N-linked substructure GlcNAc(beta 1,6) [GlcNAc(beta 1,2)] Man(alpha)- by estimation of values for the appropriate glycosidic torsional angles. The GlcNAc(beta 1,6) linkage in a trisaccharide model compound was found to be constrained to a narrow rotameric subpopulation about the substituted Man C5-C6 bond (omega = -60 degrees) and a narrow range of possible phi - psi values. Free rotation about the Man C5-C6 bond was obstructed by unfavorable steric interactions between the GlcNAc(beta 1,6) and GlcNAc(beta 1,2) residues. A phi, psi value of 55 degrees, 190 degrees was found to be consistent with the NMR data for the GlcNAc(beta 1,6) linkage. However, the value of psi appears to be "virtual" in that the molecule is in equilibrium between two different values (90 degrees and 252 degrees). For the GlcNAc(beta 1,2) linkage, complete agreement between all the observed NMR parameters and all the calculated ensemble average values could only be obtained with a set of potential energy functions which included hydrogen bonding. Other choices of potentials yielded calculated values that disagreed with at least two of the observed quantities. As a result, we infer that an interresidue hydrogen bond is formed, and we find it to be between the GlcNAc(beta 1,2) ring oxygen and the Man C3 hydroxyl.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The crystal structures of two analogs of Pro-Leu-Gly-NH2 (1), containing a gamma-lactam conformational constraint in place of the -Leu-Gly- sequences, are described. The highly biologically active (S,R)-diastereomer 2a is semi-extended at the C-terminus, with the N-terminal Pro residue in the unusual "C5" conformation [psi 1 = -0.8(15) degrees] stabilized by a (peptide)N-H...N(amino) intramolecular H-bond [the N(3)...N(4) separation is 2.687(11)A]. Conversely, the N,N'-isopropylidene aminal trihydrate of the (S,S)-diastereomer 2b, compound 3, adopts a beta-bend conformation at the C-terminus, as already reported for 1. However, the backbone torsion angles [phi 2 = 57.4(4), psi 2 = -129.9(3) degrees; psi 3 = -92.3(4), phi 3 = 6.4(5) degrees] lie close to the values expected for the corner residues of an ideal type-II' beta-bend. A weak intramolecular 4----1 H-bond is seen between the Gly carboxyamide anti-NH and Pro C = O groups. In the newly formed 2,2,3,4-tetraalkyl-5-oxo-imidazolidin-1-yl moiety the psi 1 torsion angle is 12.9(4) degrees and the intramolecular N(3)...N(4) separation is 2.321(4)A.  相似文献   

13.
The peptide N-Boc-L-Phe-dehydro-Leu-L-Val-OCH3 was synthesized by the usual workup procedure and finally by coupling the N-Boc-L-Phe-dehydro-Leu-OH to valine methyl ester. It was crystallized from its solution in methanol-water mixture at 4 degrees C. The crystals belong to the triclinic space group P1 with a = 5.972(5) A, b = 9.455(6) A, c = 13.101(6) A, alpha = 103.00(4) degrees, beta = 97.14(5) degrees, gamma = 102.86(5) degrees, V = 690.8(8) A, Z = 1, dm = 1.179(5) Mg m-3 and dc = 1.177(5) Mg m-3. The structure was determined by direct methods using SHELXS86. It was refined by block-diagonal least-squares procedure to an R value of 0.060 for 1674 observed reflections. The C alpha 2-C beta 2 distance of 1.323(9) A in dehydro-Leu is an appropriate double bond length. The bond angle C alpha-C beta-C gamma in the dehydro-Leu residue is 129.4(8) degrees. The peptide backbone torsion angles are theta 1 = -168.6(6) degrees, omega 0 = 170.0(6) degrees, phi 1 = -44.5(9) degrees, psi 1 = 134.5(6) degrees, omega 1 = 177.3(6) degrees, phi 2 = 54.5(9) degrees, psi 2 = 31.1(10) degrees, omega 2 = 171.7(6) degrees, phi 3 = 51.9(8) degrees, psi T3 = 139.0(6) degrees, theta T = -175.7(6) degrees. These values show that the backbone adopts a beta-turn II conformation. As a result of beta-turn, an intramolecular hydrogen bond is formed between the oxygen of the ith residue and NH of the (i + 3)th residue at a distance of 3.134(6) A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
O-alpha-D-Galactopyranosyl-(1---4)-D-galactopyranose, C12H22O11, Mr = 342.30, crystallises in the orthorhombic space group P2(1)2(1)2(1), and has alpha = 5.826(1), b = 13.904(3), c = 17.772(4) A, Z = 4, and Dx = 1.579 g.cm-3. Intensity data were collected with a CAD4 diffractometer. The structure was solved by direct methods and refined to R = 0.063 and Rw = 0.084 for 2758 independent reflections. The glycosidic linkage is of the type 1-axial-4-axial with torsion angles phi O-5' (O-5'-C-1'-O-1'-C-4) = 98.1(2) degrees, psi C-3 (C-3-C-4-O-1'-C-1') = -81.9(3) degrees, phi H (H-1'-C-1'-O-1'-C-4) = -18 degrees, and psi H (H-4-C-4-O-1'-C-1') = 35 degrees. The conformation is stabilised by an O-3 . . . O-5' intramolecular hydrogen-bond with length 2.787(3) A and O-3-H . . . O-5' = 162 degrees. The glycosidic linkage causes a folding of the molecule with an angle of 117 degrees between the least-square planes through the pyranosidic rings. The crystal investigated contained 56(1)% of alpha- and 44(1)% of beta-galabiose as well as approximately 70% of the gauche-trans and approximately 30% of the trans-gauche conformers about the exocyclic C-5'-C-6' and C-5-C-6 bonds. The crystal packing is governed by hydrogen bonding that engages all oxygen atoms except the intramolecular acceptor O-5' and the glycosidic O-1' oxygen atoms.  相似文献   

15.
Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The complex of Maclura pomifera agglutinin with the T-antigen disaccharide (beta-d-Gal-(1-->3)-alpha-d-GalNAc-(1-->O)-Me) was investigated by NMR spectroscopy in aqueous solution. Intramolecular transferred nuclear Overhauser enhancement (NOE) effects between the monosaccharide moieties were used to derive the ligand conformation in the lectin-bound state. Ligand protons in contact with the protein were identified by saturation transfer difference experiments and intermolecular transferred NOE effects. It is demonstrated that structural differences exist for the ligand-lectin complex in aqueous solution as compared with the previously published crystal structure (Lee, X., Thompson, A., Zhiming, Z., Ton-that, H., Biesterfeldt, J., Ogata, C., Xu, L., Johnston, R. A. Z. , and Young, N. M. (1998) J. Biol. Chem. 273, 6312-6318). In order to accommodate the O-methyl group of the disaccharide, the amino acid side chain of Tyr-122 has to rotate from its position in the crystal. The NMR data are in accord with two conformational families at the beta-(1-->3)glycosidic linkage in the solution complex with interglycosidic angles phi/psi = 45/-65 degrees and -65/-18 degrees. These differ from the bound conformation of the ligand in the crystal (phi/psi = 39/-8 degrees ) and are not highly populated by the ligand in the free state. The reason for the structural differences at the beta-(1-->3)glycosidic linkage are hydrogen bonds that stabilize the relative orientation of the monosaccharide units in the crystal. Our results demonstrate that the crystallization of a protein-carbohydrate complex can interfere with the delicate process of carbohydrate recognition in solution.  相似文献   

17.
The crystal structure of Ac-Pro-delta Val-NHCH3 was examined to determine the influence of the alpha,beta-dehydrovaline residue on the nature of peptide conformation. The peptide crystallizes from methanol-diethyl ether solution at 4 degrees in needle-shaped form in orthorhombic space group P2(1)2(1)2(1) with a = 11.384(2) A, b = 13.277(2) A, c = 9.942(1) A, V = 1502.7(4) A3, Z = 4, Dm = 1.17 g.cm-3 and Dc = 1.18 g.cm-3. The structure was solved by direct methods using SHELXS-86 and refined to an R value of 0.057 for 1922 observed reflections. The peptide is found to adopt a beta-bend between the type I and the type III conformation with phi 1 = -68.3(4) degrees, psi 1 = -20.1(4) degrees, phi 2 = -73.5(4) degrees and psi 2 = -14.1(4) degrees. An intramolecular hydrogen bond between the carbonyl oxygen of ith residue and the NH of (i + 3)th residue stabilizes the beta-bend. An additional intermolecular N...O hydrogen bond joins molecules into infinite chains. In the literature described crystal structures of peptides having a single alpha,beta-dehydroamino acid residue in the (i + 2) position and forming a beta-bend reveal a type II conformation.  相似文献   

18.
The conformation of a tetrapeptide containing a dehydro amino acid, delta ZPhe, in its sequence has been determined in the crystalline state using X-ray crystallographic techniques. The tetrapeptide, Boc-Leu-delta ZPhe-Ala-Leu-OCH3, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with four molecules in a unit cell of dimensions a = 11.655(1) A, b = 15.698(6) A and c = 18.651(3) A V = 3414.9 A and Dcalc = 1.12 g/cm-3. The asymmetric unit contains one tetrapeptide molecule, C30H46N4O7, a total of 41 nonhydrogen atoms. The structure was determined using the direct methods program SHELXS86 and refined to an R-factor of 0.049 for 3347 reflections (I3.0(I). The linear tetrapeptide in the crystal exhibits a double bend of the Type III-I, with Leu1 (phi = -54.1 degrees, psi = -34.5 degrees) and delta ZPhe2 (phi = -59.9 degrees, psi = -17.1 degrees) as the corner residues of Type III turn and delta ZPhe2 (phi = -59.9 degrees, psi = -17.1 degrees) and Ala3 (phi = -80.4 degrees, psi = 0.5 degrees) residues occupying the corners of Type I turn, with delta ZPhe as the common residue in the double bend. The turn structures are further stabilized by two intramolecular 4----1 type hydrogen bonds.  相似文献   

19.
The peptide N-Ac-dehydro-Phe-L-Val-L-Val-OCH3 (C22H31N3O5) was synthesized by the usual workup procedure and finally by coupling the N-Ac-dehydro-Phe-L-Val-OH to valine methyl ester. It was crystallized from its solution in acetonitrile-water mixture at 4 degrees C. The crystals belong to the space group P1 with a = 8.900(3) A, b = 11.135(2) A, c = 12.918(2) A, alpha = 90.36(1) degrees, beta = 110.14(3) 14(3) degrees, V = 1207.7(6) A, 3Z = 2, dm = 1.156(5) Mgm-3, dc = 1.148(5) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by full-matrix least-squares procedure to an R value of 0.077 for 3916 observed reflections. The molecular dimensions and conformations of the two crystallographically independent molecules are in good agreement. In the dehydro residues, the average C alpha-C beta distance is 1.31(2) A whereas the bond angle C alpha-C beta-C gamma is 132(1) degrees. The average backbone torsion angles are omega 0 = 169(1) degrees, phi 1 = -40(1) degree, psi 1 = -50(1) degree, omega 1 = -177(1) degree, phi 2 = 54(1) degree, psi 2 = 46(1) degree, omega 2 = -174(1) degree, phi 3 = 103(1) degree, psi T3 = -139(1) degree, and theta T3 = -176(1) degree. The acetyl group is in the trans conformation, while the backbone adopts a right-handed and left-handed helical conformation alternatingly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Highly specific structures can be designed by inserting dehydro-residues into peptide sequences. The conformational preferences of branched beta-carbon residues are known to be different from other residues. As an implication it was expected that the branched beta-carbon dehydro-residues would also induce different conformations when substituted in peptides. So far, the design of peptides with branched beta-carbon dehydro-residues at (i + 1) position has not been reported. It may be recalled that the nonbranched beta-carbon residues induced beta-turn II conformation when placed at (i + 2) position while branched beta-carbon residues induced beta-turn III conformation. However, the conformation of a peptide with a nonbranched beta-carbon residue when placed at (i + 1) position was not found to be unique as it depended on the stereochemical nature of its neighbouring residues. Therefore, in order to induce predictably unique structures with dehydro-residues at (i + 1) position, we have introduced branched beta-carbon dehydro-residues instead of nonbranched beta-carbon residues and synthesized two peptides: (I) N-Carbobenzoxy-DeltaVal-Ala-Leu-OCH3 and (II) N-Carbobenzoxy-DeltaIle-Ala-Leu-OCH3 with DeltaVal and DeltaIle, respectively. The crystal structures of peptides (I) and (II) have been determined and refined to R-factors of 0.065 and 0.063, respectively. The structures of both peptides were essentially similar. Both peptides adopted type II beta-turn conformations with torsion angles; (I): phi1 = -38.7 (4) degrees, psi1 = 126.0 (3) degrees; phi2 = 91.6 (3) degrees, psi2 = -9.5 (4) degrees and (II): phi1 = -37.0 (6) degrees, psi1 = 123.6 (4) degrees, phi2 = 93.4 (4), psi2 = -11.0(4) degrees respectively. Both peptide structures were stabilized by intramolecular 4-->1 hydrogen bonds. The molecular packing in both crystal structures were stabilized in each by two identical hydrogen bonds N1...O1' (-x, y + 1/2, -z) and N2...O2' (-x + 1, y + 1/2, -z) and van der Waals interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号