首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methyl bromide (MeBr) has broad microbicidal activity, but its use as a disinfectant for food is limited by the resulting bromide residues. Increasing the MeBr concentration, exposure temperature, or exposure period of a treatment tended to increase both the microbicidal efficacy of MeBr and the bromide residues. Its sporicidal activity was less at high than at low relative humidity within the range of 20 to 99%. Both the efficacy and the resulting residues of a MeBr treatment varied inversely with the load of product in a fumigation chamber due to sorption of the fumigant. Fumigation tests with almond kernels inoculated with Escherichia coli or Salmonella typhimurium indicated that MeBr can be used to disinfect whole nut kernels without resulting in excessive bromide residues, although the MeBr level necessary is higher than that normally used for insect control.  相似文献   

2.
The primary goal of this study was to determine the conditions required for the effective inactivation of Bacillus anthracis spores on materials by using methyl bromide (MeBr) gas. Another objective was to obtain comparative decontamination efficacy data with three avirulent microorganisms to assess their potential for use as surrogates for B. anthracis Ames. Decontamination tests were conducted with spores of B. anthracis Ames and Geobacillus stearothermophilus, B. anthracis NNR1Δ1, and B. anthracis Sterne inoculated onto six different materials. Experimental variables included temperature, relative humidity (RH), MeBr concentration, and contact time. MeBr was found to be an effective decontaminant under a number of conditions. This study highlights the important role that RH has when fumigation is performed with MeBr. There were no tests in which a ≥6-log10 reduction (LR) of B. anthracis Ames was achieved on all materials when fumigation was done at 45% RH. At 75% RH, an increase in the temperature, the MeBr concentration, or contact time generally improved the efficacy of fumigation with MeBr. This study provides new information for the effective use of MeBr at temperatures and RH levels lower than those that have been recommended previously. The study also provides data to assist with the selection of an avirulent surrogate for B. anthracis Ames spores when additional tests with MeBr are conducted.  相似文献   

3.
The nature and extent of damage produced by methyl bromide (MeBr)exposure, and recovery of function after exposure, were studiedusing a multifacct approach which included behavioral, morphologicaland neurochemical endpoints. Thirty adult male Long–Evansrats were exposed to 200 p.p.m. MeBr for 4 h/day, 4 days a weekfor 2 weeks. Fifteen control rats were exposed to filtered aironly. On the first day following the onset exposure to MeBr,extensive damage to the olfactory epithelium as well as greatlyimpaired olfactory function were observed. However, even withcontinuous MeBr exposure, olfactory function was essentiallynormal after 4 days of exposure. Repair of the epithelium wasin progress by day 4 although morphology was atypical. The levelsof carnosine in both the olfactory epithelium and bulbs wereseverely depleted by day 4. Recovery, both in terms of structuralrepair and return of normal carnosine concentrations, laggedfar behind recovery of the ability to detect an odor stimulus.Even with repeated exposure, olfactory function recovered rapidly,even faster than anatomical repair. Measurement of overall carnosinelevels correlated well with the results obtained from representativeareas of tissues selected for histopathology. Morphometric analysisprovided quantitative detail on the nature of insult resultingfrom MeBr exposure. These data indicate that the olfactory systemis a most resilient system and that normal function is possibleeven after repeated insult by a toxic agent.  相似文献   

4.
A dynamic dilution system for producing low mixing ratios of methyl bromide (MeBr) and a sensitive analytical technique were used to study the uptake of MeBr by various soils. MeBr was removed within minutes from vials incubated with soils and ~10 parts per billion by volume of MeBr. Killed controls did not consume MeBr, and a mixture of the broad-spectrum antibiotics chloramphenicol and tetracycline inhibited MeBr uptake by 98%, indicating that all of the uptake of MeBr was biological and by bacteria. Temperature optima for MeBr uptake suggested a biological sink, yet soil moisture and temperature optima varied for different soils, implying that MeBr consumption activity by soil bacteria is diverse. The eucaryotic antibiotic cycloheximide had no effect on MeBr uptake, indicating that soil fungi were not involved in MeBr removal. MeBr consumption did not occur anaerobically. A dynamic flowthrough vial system was used to incubate soils at MeBr mixing ratios as low as those found in the remote atmosphere (5 to 15 parts per trillion by volume [pptv]). Soils consumed MeBr at all mixing ratios tested. Temperate forest and grassy lawn soils consumed MeBr most rapidly (rate constant [k] = 0.5 min−1), yet sandy temperate, boreal, and tropical forest soils also readily consumed MeBr. Amendments of CH4 up to 5% had no effect on MeBr uptake even at CH4:MeBr ratios of 107, and depth profiles of MeBr and CH4 consumption exhibited very different vertical rate optima, suggesting that methanotrophic bacteria, like those presently in culture, do not utilize MeBr when it is at atmospheric mixing ratios. Data acquired with gas flux chambers in the field demonstrated the very rapid in situ consumption of MeBr by soils. Uptake of MeBr at mixing ratios found in the remote atmosphere occurs via aerobic bacterial activity, displays first-order kinetics at mixing ratios from 5 pptv to ~1 part per million per volume, and is rapid enough to account for 25% of the global annual loss of atmospheric MeBr.  相似文献   

5.
Fumigation with methyl bromide (MeBr) at a concentration of 120 mg/1 maintained for 4 h at 25°C caused 100% mortality of spores of Aspergillus ochraceus, A. flavus, Penicillium citrinum, P. chrysogenum and P. cyclopium. However, 40% of an A. niger spore population retained its viability after this treatment. Increasing the duration of fumigation to 24 h at a concentration of 40 mg/1 MeBr caused 100% spore mortality of all fungi tested. Total growth inhibition of 24 h-old mycelia was achieved with 40 mg/1 for 24 h or 120 mg/1 for 4 h. These concentrations for the same period of exposure were not inhibitory for 7-day-old mycelia of any of the fungi tested. In A. niger-inoculated wheat grains fumigated with 100 mg/1 MeBr for 24 h, 20% yielded fungal contaminants after 16 days of storage and 100% after 29 days. There was a marked drop in the percent germination of the grains after fumigation, whereas the free fatty acids level was higher than in unfumigated grain. The results of the in vivo study suggest that MeBr given at a commercial dosage for 24 h is not only ineffective in destroying the internal inocula of wheat grains but also enables their subsequent development by weakening the resistance of grains to fungal attack.  相似文献   

6.
The oxidation of [(sup14)C]methyl bromide ([(sup14)C]MeBr) to (sup14)CO(inf2) was measured in field experiments with soils collected from two strawberry plots fumigated with mixtures of MeBr and chloropicrin (CCl(inf3)NO(inf2)). Although these fumigants are considered potent biocides, we found that the highest rates of MeBr oxidation occurred 1 to 2 days after injection when the fields were tarped, rather than before or several days after injection. No oxidation of MeBr occurred in heat-killed soils, indicating that microbes were the causative agents of the oxidation. Degradation of MeBr by chemical and/or biological processes accounted for 20 to 50% of the loss of MeBr during fumigation, with evasion to the atmosphere inferred to comprise the remainder. In laboratory incubations, complete removal of [(sup14)C]MeBr occurred within a few days, with 47 to 67% of the added MeBr oxidized to (sup14)CO(inf2) and the remainder of counts associated with the solid phase. Chloropicrin inhibited the oxidation of MeBr, implying that use of this substance constrains the extent of microbial degradation of MeBr during fumigation. Oxidation was by direct bacterial attack of MeBr and not of methanol, a product of the chemical hydrolysis of MeBr. Neither nitrifying nor methane-oxidizing bacteria were sufficiently active in these soils to account for the observed oxidation of MeBr, nor could the microbial degradation of MeBr be linked to cooxidation with exogenously supplied electron donors. However, repeated addition of MeBr to live soils resulted in higher rates of its removal, suggesting that soil bacteria used MeBr as an electron donor for growth. To support this interpretation, we isolated a gram-negative, aerobic bacterium from these soils which grew with MeBr as a sole source of carbon and energy.  相似文献   

7.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 microM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [(14)C]formaldehyde to (14)CO(2) but had only a small capacity for oxidation of [(14)C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [(14)C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent K(s) values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO(2). The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

8.
S ummary : Various micro-organisms were exposed to methyl bromide (MeBr) gas at concentrations of 20–40 mg/l for 20 h at 25°. A significant reduction was obtained in the number of viable bacteria and Aspergillus fumigatus spores, both in the dry form and in semifluid faeces, but no reduction was detected either in dried Bacillus subtilis spores or in one of the bacteriophages tested. The investigation indicates that MeBr is less effective against certain viruses, bacteria and fungi than against coccidial oocysts. The results suggest that fumigation of commercial poultry houses with these concentrations of MeBr may not, in all circumstances, provide the overall reduction of poultry pathogens desired.  相似文献   

9.
We examined the rates and sustainability of methyl bromide (MeBr) oxidation in moderately low density cell suspensions ( approximately 6 x 10(7) cells ml(-1)) of the NH(3)-oxidizing bacterium Nitrosomonas europaea. In the presence of 10 mM NH(4)(+) and 0.44, 0. 22, and 0.11 mM MeBr, the initial rates of MeBr oxidation were sustained for 12, 12, and 24 h, respectively, despite the fact that only 10% of the NH(4)(+), 18% of the NH(4)(+), and 35% of the NH(4)(+), respectively, were consumed. Although the duration of active MeBr oxidation generally decreased as the MeBr concentration increased, similar amounts of MeBr were oxidized with a large number of the NH(4)(+)-MeBr combinations examined (10 to 20 micromol mg [dry weight] of cells(-1)). Approximately 90% of the NH(3)-dependent O(2) uptake activity and the NO(2)(-)-producing activity were lost after N. europaea was exposed to 0.44 mM MeBr for 24 h. After MeBr was removed and the cells were resuspended in fresh growth medium, NO(2)(-) production increased exponentially, and 48 to 60 h was required to reach the level of activity observed initially in control cells that were not exposed to MeBr. It is not clear what percentage of the cells were capable of cell division after MeBr oxidation because NO(2)(-) accumulated more slowly in the exposed cells than in the unexposed cells despite the fact that the latter were diluted 10-fold to create inocula which exhibited equal initial activities. The decreases in NO(2)(-)-producing and MeBr-oxidizing activities could not be attributed directly to NH(4)(+) or NH(3) limitation, to a decrease in the pH, to the composition of the incubation medium, or to toxic effects caused by accumulation of the end products of oxidation (NO(2)(-) and formaldehyde) in the medium. Additional cooxidation-related studies of N. europaea are needed to identify the mechanism(s) responsible for the MeBr-induced loss of cell activity and/or viability, to determine what percentages of cells damaged by cooxidative activities are culturable, and to determine if cooxidative activity interferes with the regulation of NH(3)-oxidizing activity.  相似文献   

10.
Anoplophora glabripennis Motschulsky, an Asian cerambicid beetle, was first found in the United States in 1996 and was likely introduced into the United States through infested wood packing materials and dunnage. Methyl bromide (MeBr) fumigation is an internationally accepted treatment for such wood-boring beetles, but the use of MeBr is scheduled for reduction or elimination as alternatives become available. The use of MeBr can be reduced by more efficient and technically sound fumigation techniques, including good circulation and proper loading. Concentration x time products (CxT) reported for A. glabripennis in solid wood timbers were used to test estimated doses in container fumigations conducted in Tianjin and Shanghai, China, during years 2002-2003. We found that CxT products observed were generally adequate and would support reduced doses of MeBr at temperatures intermediate (10.0 and 15.6 degrees C) to the Animal and Plant Health Inspection Service schedule of 80 g and 48 g/m3 at > or =4.4 and > or = 21.1degrees C, respectively. The use of fans is recommended, and loading of the containers should never reach 100% to allow for better circulation and desorption. Proper use of fans will allow for better aeration and increase safety to inspectors and consignees of containerized fumigated commodities.  相似文献   

11.
Ash (Fraxinus spp.) logs, infested with fully developed, cold-acclimated larval and prepupal emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were fumigated with methyl bromide (MeBr) at 4.4 and 10.0 degrees C for 24 h. Concentrations X time dosages of MeBr obtained were 1579 and 1273 g-h/m3 (24-h exposure) at 4.4 and 10.0 degrees C after applied doses of 112 and 96 g/m3, respectively. MeBr concentrations were simultaneously measured with a ContainIR infrared monitor and Fumiscope thermal conductivity meter calibrated for MeBr to measure the effect of CO2 on Fumiscope concentration readings compared with the infrared (IR) instrument. The presence of CO2 caused false high MeBr readings. With the thermal conductivity meter, CO2 measured 11.36 g/m3 MeBr per 1% CO2 in clean air, whereas the gas-specific infrared ContainIR instrument measured 9.55% CO2 as 4.2 g/m3 MeBr (0.44 g/m3 per 1% CO2). The IR instrument was 0.4% as sensitive to CO2 as the thermal conductivity meter. After aeration, fumigated and control logs were held for 8 wk to capture emerging beetles. No A. planipennis adults emerged from any of the fumigated logs, whereas 262 emerged from control logs (139 and 123/m2 at 4.4 and 10.0 degrees C, respectively). An effective fumigation dose and minimum periodic MeBr concentrations are proposed. The use of a CO2 scrubber in conjunction with nonspecific thermal conductivity instruments is necessary to more accurately measure MeBr concentrations.  相似文献   

12.

Background and Aims

Soil treatment by anaerobic soil disinfestation (ASD) combined with soil solarization can effectively control soilborne plant pathogens and plant-parasitic nematodes in specialty crop production systems. At the same time, research is limited on the impact of soil treatment by ASD?+?solarization on soil fertility, crop performance and plant nutrition. Our objectives were to evaluate the response of 1) soil nutrients and 2) vegetable crop performance to ASD?+?solarization with differing levels of irrigation, molasses amendment, and partially-composted poultry litter amendment (CPL) compared to an untreated control and a methyl bromide (MeBr)?+?chloropicrin-fumigated control.

Methods

A 2-year field study was established in 2008 at the USDA-ARS U.S. Horticultural Research Lab in Fort Pierce, Florida, USA to determine the effectiveness of ASD as an alternative to MeBr fumigation for a bell pepper (Capsicum annum L.)-eggplant (Solanum melongena L.) double crop system. A complete factorial combination of treatments in a split-split plot was established to evaluate three levels of initial irrigation [10, 5, or 0 cm], two levels of CPL (amended or unamended), and two levels of molasses (amended or unamended) in combination with solarization. Untreated and MeBr controls were established for comparison to ASD treatments.

Conclusions

Results suggest that ASD treatment using molasses as the carbon source paired with solarization can be an effective strategy to maintain crop yields in the absence of soil fumigants. For both bell pepper and eggplant crops, ASD treatments with molasses as the carbon source had equivalent or greater marketable yields than the MeBr control. The application of organic amendments in ASD treatment (molasses or molasses?+?CPL) caused differences in soil nutrients and plant nutrition compared to the MeBr control that must be effectively managed in order to implement ASD on a commercial scale as a MeBr replacement.  相似文献   

13.
Cell suspensions of Methylococcus capsulatus mineralized methyl bromide (MeBr), as evidence by its removal from the gas phase, the quantitative recovery of Br- in the spent medium, and the production of 14CO2 from [14C]MeBr. Methyl fluoride fluoride (MeF) inhibited oxidation of methane as well as that of [14C]MeBr. The rate of MeBr consumption by cells varied inversely with the supply of methane, which suggested a competitive relationship between these two substrates. However, MeBr did not support growth of the methanotroph. In soils exposed to high levels (10,000 ppm) of MeBr, methane oxidation was completely inhibited. At this concentration, MeBr removal rates were equivalent in killed and live controls, which indicated a chemical rather than biological removal reaction. At lower concentration (1,000 ppm) of MeBr, methanotrophs were active and MeBr consumption rates were 10-fold higher in live controls than in killed controls. Soils exposed to trace levels (10 ppm) of MeBr demonstrated complete consumption within 5 h of incubation, while controls inhibited with MeF or incubated without O2 had 50% lower removal rates. Aerobic soils oxidized [14C]MeBr to 14CO2, and MeF inhibited oxidation by 72%. Field experiments demonstrated slightly lower MeBr removal rates in chambers containing MeF than in chambers lacking MeF. Collectively, these results show that soil methanotrophic bacteria, as well as other microbes, can degrade MeBr present in the environment.  相似文献   

14.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 μM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [14C]formaldehyde to 14CO2 but had only a small capacity for oxidation of [14C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [14C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent Ks values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO2. The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

15.
Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters ( approximately 2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2(T) - terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2(T) displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent K(s) of 2.4 microM MeBr and a V(max) of 1.6 nmol h(-1) (10(6) cells)(-1). Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 x 10(7)-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2(T)), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C(1) compound-oxidizing bacteria in this study. Aerobic C(1) bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.  相似文献   

16.
Benzyl bromide is a selective alkylator of sulfur nucleophiles including methionine and cysteine. Only the mercaptide ion is a more efficient nucleophile than is the sulfur ether of methionine. Alkylation rates relative to methionine are 200: less than or equal to 0.03: less than or equal to 0.03: less than or equal to 0.02 for GS-, histidine, tryptophan, and GSH, respectively. Alkylation of methionine by benzyl bromide is more than 50 times faster than alkylation by iodoacetate. Fumarase is readily inactivated by exposure to benzyl bromide at pH 6.6 to 6.8 accompanied by alkylation of close to 1 methionine residue/subunit. Fumarase fully inactivated by exposure to benzyl bromide shows no detected alkylation of amino acid residues other than methionine. The rate of inactivation of fumarase by benzyl bromide is decreased about 4-fold by the presence of excess substrates. Denaturation of fumarase in 6 M urea at pH 6.5 exposes additional methionine as well as cysteine residues to alkylation.  相似文献   

17.
Steam and soil solarization were investigated for control of the root-knot nematode Meloidogyne arenaria in 2 yr of field trials on a commercial flower farm in Florida. The objective was to determine if preplant steam treatments in combination with solarization, or solarization alone effectively controlled nematodes compared to methyl bromide (MeBr). Trials were conducted in a field with naturally occurring populations of M. arenaria. Treatments were solarization alone, steam treatment after solarization using standard 7.6-cm-diameter perforated plastic drain tile (steam 1), steam treatment following solarization using custom-drilled plastic drain tile with 1.6-mm holes spaced every 3.8 cm (steam 2), and MeBr applied at 392 kg/ha 80:20 MeBr:chloropicrin. Drain tiles were buried approximately 35 cm deep with four tiles per 1.8 by 30 m plot. Steam application followed a 4-wk solarization period concluding in mid-October. All steam was generated using a Sioux propane boiler system. Plots were steamed for sufficient time to reach the target temperature of 70°C for 20 min. Solarization plastic was retained on the plots during steaming and plots were covered with a single layer of carpet padding to provide additional insulation. The floriculture crops larkspur (Delphinium elatum and Delphinium × belladonna), snapdragon (Antirrhinum majus), and sunflower (Helianthus annuus) were produced according to standard commercial practices. One month after treatment in both years of the study, soil populations of M. arenaria were lower in both steam treatments and in MeBr compared to solarization alone. At the end of the season in both years, galling on larkspur, snapdragon, and sunflowers was lower in both steam treatments than in solarization. Both steam treatments also provided control of M. arenaria in soil at the end of the season comparable to, or exceeding that provided by MeBr. Both steam treatments also reduced M. arenaria in snapdragon roots comparable to, or exceeding control with MeBr. Meloidogyne arenaria in soil increased in solarization alone. Solarization alone also had higher gall ratings on larkspur, snapdragon, and sunflower than all other treatments. Steam provided excellent control of M. arenaria in this study.  相似文献   

18.
Resident peritoneal macrophages from untreated mice develop microbicidal activity against amastigotes of the protozoan parasite Leishmania tropica (current nomenclature = Leishmania major) after in vitro exposure to LK from antigen-stimulated leukocyte culture fluids. This LK-induced macrophage microbicidal activity was completely abrogated by addition of 7:3 phosphatidylcholine: phosphatidylserine liposomes. Liposome inhibition was not due to direct toxic effects against the parasite or macrophage effector cell; factors in LK that induce macrophage microbicidal activity were not adsorbed or destroyed by liposome treatment. Other phagocytic particles, such as latex beads, had no effect on microbicidal activity. Moreover, liposome inhibition of activated macrophage effector function was relatively selective: LK-induced macrophage tumoricidal activity was not affected by liposome treatment. Liposome inhibition was dependent upon liposome dose (5 nmoles/culture) and time of addition of leishmania-infected, LK-treated macrophage cultures. Addition of liposomes through the initial 8 hr of culture completely inhibited LK-induced macrophage microbicidal activity; liposomes added after 16 hr had no effect. Similarly, microbicidal activity by macrophages activated in vivo by BCG or Corynebacterium parvum was not affected by liposome treatment. Liposome treatment also did not affect the increased resistance to infection induced in macrophages by LK. These data suggest that liposomes interfere with one or more early events in the induction of activated macrophages (macrophage-LK interaction) and not with the cytotoxic mechanism itself (parasite-macrophage interaction). These studies add to the growing body of data that implicate cell lipid in regulatory events controlling macrophage effector function.  相似文献   

19.
The complete amino acid sequence of rabbit muscle phosphoglucomutase   总被引:14,自引:0,他引:14  
The complete amino acid sequence of rabbit muscle phosphoglucomutase has been determined by isolating the 11 peptide fragments produced by the cyanogen bromide cleavage reaction and subjecting these to automated sequencing procedures. Products produced by treatment of some of these fragments with hydroxylamine, iodosobenzoic acid, mild acid, cyanogen bromide in formic and heptafluorobutyric acids, Staphylococcus aureus V8 protease, and trypsin (with or without blocking at lysine residues) were used to complete the sequence for each of the cyanogen bromide fragments. The cyanogen bromide fragments were ordered by isolating the four tryptic peptides produced by a limited tryptic digest of the native enzyme in the presence of its substrates and its bivalent metal ion activator, Mg2+, degrading these by means of trypsin, after blocking digestion at lysine residues, and isolating and identifying all fragments thus produced that contained 10 or more residues. The 561-residue sequence thus obtained is one of the longest that has been determined by chemical means. There is excellent agreement between this sequence and published compositions after appropriate normalization. The absorbance of the enzyme is about 7.0 at 278 nm for a 1% solution; this value is 9% lower than that previously used.  相似文献   

20.
Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters (≈2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2T — terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2T displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent Ks of 2.4 μM MeBr and a Vmax of 1.6 nmol h−1 (106 cells)−1. Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 × 107-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2T), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C1 compound-oxidizing bacteria in this study. Aerobic C1 bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号