首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yakimenko  E. E.  Grodnitskaya  I. D. 《Microbiology》2000,69(6):726-729
Soils in the tree nurseries studied were characterized by a lower species diversity of fungi than adjacent virgin soils. In particular, the relative abundances of representatives of the genera Mucor, Chaetomium, and Trichoderma in the nursery soil were two times lower than in adjacent virgin soils. On the other hand, the nursery soil exhibited greater abundances of fungi of the genus Fusarium, which are causative agents of many diseases of conifer seedlings. To appreciate the efficiency of biocontrol of the infectious diseases of conifer seedlings, we introduced several indigenous Trichoderma strains into the nursery soil and found that this affected the species composition of soil microflora considerably. Changes in the species composition of mycobiota beneficially influenced the phytosanitary state of soils and reduced the infectious lodging of conifer seedlings.  相似文献   

2.
Summary Different mycorrhizal fungi were tested for their effectiveness in promoting growth of Sitka spruce seedlings, in two contrasting soils, in a glasshouse pot experiment. In nursery soil,Laccaria amethystina significantly improved growth of seedlings in comparison toL. laccata. Seedlings inoculated with a forest isolate ofThelephora terrestris were significantly larger than those inoculated with a nursery isolate when grown in forest soil. The effectiveness ofComplexipes moniliformis in forest soil was poor in comparison to other mycorrhizal fungi. Strains aswell as species of mycorrhizal fungi affect seedling growth differently. These effects are further influenced by soil type.  相似文献   

3.
Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed.  相似文献   

4.
Mycorrhizas on nursery and field seedlings of Quercus garryana   总被引:1,自引:0,他引:1  
Oak woodland regeneration and restoration requires that seedlings develop mycorrhizas, yet the need for this mutualistic association is often overlooked. In this study, we asked whether Quercus garryana seedlings in nursery beds acquire mycorrhizas without artificial inoculation or access to a mycorrhizal network of other ectomycorrhizal hosts. We also assessed the relationship between mycorrhizal infection and seedling growth in a nursery. Further, we compared the mycorrhizal assemblage of oak nursery seedlings to that of conifer seedlings in the nursery and to that of oak seedlings in nearby oak woodlands. Seedlings were excavated and the roots washed and examined microscopically. Mycorrhizas were identified by DNA sequences of the internal transcribed spacer region and by morphotype. On oak nursery seedlings, predominant mycorrhizas were species of Laccaria and Tuber with single occurrences of Entoloma and Peziza. In adjacent beds, seedlings of Pseudotsuga menziesii were mycorrhizal with Hysterangium and a different species of Laccaria; seedlings of Pinus monticola were mycorrhizal with Geneabea, Tarzetta, and Thelephora. Height of Q. garryana seedlings correlated with root biomass and mycorrhizal abundance. Total mycorrhizal abundance and abundance of Laccaria mycorrhizas significantly predicted seedling height in the nursery. Native oak seedlings from nearby Q. garryana woodlands were mycorrhizal with 13 fungal symbionts, none of which occurred on the nursery seedlings. These results demonstrate the value of mycorrhizas to the growth of oak seedlings. Although seedlings in nursery beds developed mycorrhizas without intentional inoculation, their mycorrhizas differed from and were less species rich than those on native seedlings.  相似文献   

5.
The potential for mycorrhizal formation and Frankia nodulation were studied in soils from six sites in the Pacific Northwest. The sites included young and old alder stands, a 1-year-old conifer clear-cut, a young conifer plantation, and rotation-aged and old-growth conifer stands. A bioassay procedure was used with both red alder and Douglas fir seedlings as hosts. After 6 weeks growth, seedlings of both hosts were harvested every 3 weeks for 21 weeks and numbers of nodules and ectomycorrhizal types estimated. Nodules formed on red alder and ectomycorrhizae formed on both alder and Douglas fir in soil from all sites. Nodulation potential was highest in soil from the alder stands and the conifer plantation. Seven morphologically distinct ectomycorrhizal types were recovered on Douglas fir and five on alder. Only Thelephora terrestris, a broad-host-range mycobiont, formed mycorrhizae on both hosts. New ectomycorrhizal types formed on both hosts throughout the bioassay. Ectomycorrhizal colonization of alder was greatest in the alder and clear-cut soils. Low ectomycorrhizal colonization on alder was found in soils from sites where conifers were actively growing. Ectomycorrhizal colonization of Douglas fir was highest in the young alder and conifer plantation soils and was low in the rotation-aged conifer soil. The highest diversity of ectomycorrhizal types was found on alder in the conifer clear-cut soil and on Douglas fir in the rotation-aged conifer soil. Effects of host specificity, nodulation and mycorrhiza-forming potential and nodule-mycorrhiza interactions on seedling establishment are discussed in relation to seral stage dynamics and attributes of pioneer ectomycorrhizal fungal species.  相似文献   

6.
为了分析内蒙古草原不同植物物种对土壤微生物群落的影响, 采用实时荧光定量PCR (real-time PCR)以及末端限制性片段长度多态性分析(terminal restriction fragment length polymorphism, T-RFLP)等分子生物学技术, 测定了退化-恢复样地上几种典型植物的根际土壤和非根际土壤中细菌和真菌的数量及群落结构。结果表明, 不同植物物种对根际和非根际细菌及根际真菌数量均有显著影响。根际土壤中的细菌和真菌数量普遍高于非根际土壤, 尤其以真菌更为明显。对T-RFLP数据进行多响应置换过程(multi-response permutation procedures, MRPP)分析和主成分分析(principal component analysis, PCA), 结果表明, 大多数物种的根际细菌及真菌的群落结构与非根际有明显差异, 并且所有物种的真菌群落可以按根际和非根际明显分为两大类群。此外, 细菌和真菌群落结构在一定程度上存在按物种聚类的现象, 以细菌较为明显。这些结果揭示了不同植物对土壤微生物群落的影响特征, 对理解内蒙古草原地区退化及恢复过程中植被演替引起的土壤性质和功能的变化有一定的帮助。  相似文献   

7.
The community of indigenous mycorrhizal fungi on planted-out nursery seedlings of Scots pine (Pinus sylvestris L.) was surveyed for two years at two sites in Sweden. Factors studied were the effect of forests versus clearcuts on these communities, age of clearcut, planting-out in early summer versus autumn, age of planted-out seedlings and time of soil scarification. Analyses of variance and detrended correspondence analysis showed that the relative magnitude of the effects of these factors upon the composition of the ectomycorrhizal community on seedlings planted out was site > time of outplanting > forest/clearcut > age of clearcut > time of soil scarification. In general, clear-cutting had a minor effect, both qualitatively and quantitatively. Nineteen different mycorrhizal types were recorded. After two seasons, seedlings hosted an average of 1.8 indigenous mycorrhizal types and 0.95 nursery mycorrhizal types comprising 35% and 65% of the mycorrhizal roots, respectively.Piloderma croceum colonized seedlings significantly more frequently in forests than in clearcuts, whereas the reverse was found forCenococcum geophilum, and two other mycorrhizal types. However, there is a general agreement between mature coniferous forests and clearcuts as regards both the inoculum potential of dominant fungi adapted to early colonization, and the composition of these fungal species. The fungal adaptations to forests obviously resemble those conditions occurring at clearcuts.  相似文献   

8.
秸秆覆盖免耕土壤真菌群落结构与生态特征研究   总被引:22,自引:1,他引:21  
高云超  朱文珊  陈文新 《生态学报》2001,21(10):1704-1710
不同耕作方法土壤真菌群落结构和生态特征分析表明,翻耕0-10cm土层土壤真菌群落含有29种真菌,其中以Chrysosporium merdarium为优势种;翻耕10-20cm土层含有17种真菌,以Sterile black A为优势种:翻耕20-30cm土层含有10种真菌,其中以Chaetomium bostrychodes为优势种,铁茬0-10cm含16种真菌,其中Sterile black A是优势种;铁茬10-20cm土层含有26种真菌,优势种为Sterile black A;铁茬20-30cm含有14种真菌,其中Chaetomium bostrychodes为优势种,免耕0-10cm土层由23种真菌构成,Trichoderma viride和T.koningii为优势种,免耕10-20cm土层由14个种类构成,Talaromyces trachyspermus为优势种,免耕20-30cm土壤由9种真菌组成,其中Talaromyces trachypermus为优势种,免耕土壤真菌群落的多样性和均匀度指数均较高,主成分分析表明,土壤耕作形成了特征性的真菌区系。  相似文献   

9.
The soil fungi in the pure stand of oak (Quercus petraea), beech (Fagus orientalis), and pine (Pinus nigra) were investigated by the dilution plate method at Yildiz Mountain in Thrace region. The mycobiota, as well as the number of isolates per plate, was determined at various soil depths. Principal component analysis of the soil profiles indicated that there was variation in mycobiota composition and the variation was attributed to differences among the ecosystems. When comparing conifer and hardwood soils, using Sorenson’s similarity index, fungal community composition corresponded more closely between the hardwood stands than with the conifer stand. Fungal community composition appears to be influenced by the organic compounds entering soil from plant litter.  相似文献   

10.
The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75 % higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains.  相似文献   

11.
Soil organisms influence plant species coexistence and invasion potential. Plant-soil feedbacks occur when plants change soil community composition such that interactions with that soil community in turn may positively or negatively affect the performance of conspecifics. Theories predict and studies show that invasions may be promoted by stronger negative soil feedbacks for native compared with exotic species. We present a counter-example of a successful invader with strong negative soil feedbacks apparently caused by host-specific, pathogenic soil fungi. Using a feedback experiment in pots, we investigated whether the relative strength of plant-soil feedbacks experienced by a non-native woody invader, Sapium sebiferum, differed from several native tree species by examining their performance in soils collected near conspecifics ('home soils') or heterospecifics ('away soils') in the introduced range. Sapium seedlings, but no native seedlings, had lower survival and biomass in its home soils compared with soils of other species (negative feedback'). To investigate biotic agents potentially responsible for the observed negative feedbacks, we conducted two additional experiments designed to eliminate different soil taxa ('rescue experiments'). We found that soil sterilization (pot experiment ) or soil fungicide applications (pot and field experiments) restored Sapium performance in home soil thereby eliminating the negative feedbacks we observed in the original experiment. Such negative feedbacks apparently mediated by soil fungi could have important effects on persistence of this invader by limiting Sapium seedling success in Sapium dominated forests (home soils) though their weak effects in heterospecific (away) soils suggest a weak role in limiting initial establishment.  相似文献   

12.
Calcium is an important nutrient that can be limiting in many forest ecosystems, where acid deposition and other natural and anthropogenic activities have resulted in significant soil calcium depletion. Calcium’s critical role in physiological and structural processes and its limited mobility and storage in many organisms, make it a potential driver of ecosystem structure and function, but little is known about how changes in soil calcium affect community composition, especially in terrestrial vertebrates. The aim of this study was to establish relationships between the abundances of forest songbird species and soil calcium and to elucidate linking mechanisms by establishing simultaneous relationships with trophic and habitat variables. We measured soil calcium and pH, calcium-rich invertebrate abundances, vegetation, and songbird abundances at 14 interior forest sites across central Pennsylvania representing a range of soil calcium levels. Bird community composition varied with soil calcium and pH, with 10 bird species having the highest abundances in forests with high calcium soils, and five species having the highest abundances with low calcium soils. Bird species associated with low-calcium soils were associated with high densities of mountain laurel (Kalmia latifolia), an acid-loving shrub, whereas bird species associated with high-calcium soils were associated with high densities of saplings and high basal area of acid-sensitive tree species. Homogenization of soil conditions through land-use patterns and soil calcium depletion pose the risk of reducing the beta diversity of bird species across forest areas because community composition varied with soil calcium.  相似文献   

13.
This study was conducted to evaluate the competitiveness and effectiveness of Thelephoroid fungal sp. ORS.XM002 against native ectomycorrhizal fungal species colonizing potted Afzelia africana seedlings during 3 months of growth in different forest soils collected from under mature trees. Using morphotyping and restriction fragment length polymorphism (RFLP) analysis of the nuclear rDNA internal transcribed spacer (ITS), we were able to distinguish the introduced Thelephoroid fungal sp. ORS.XM002 among native ectomycorrhizal fungal species that form ectomycorrhizae in A. africana seedlings. The morphotype (MT) of the introduced fungus showed some color variation, with a shift from light- to dark-brown observed from younger to older mycorrhizal tips. We were able to differentiate the ITS type xm002 of the introduced fungus from the 14 ITS-RFLP types characterizing the 9 native MT that occurred in forest soils. The frequency of ITS type xm002 ranged from 40% to 49% depending on the forest soil used, and was always higher than those of ITS types from native dark-brown MT that occurred in inoculated seedlings 3 months after inoculation. We considered Thelephoroid fungal sp. ORS.XM002 to be responsible for stimulation of mycorrhizal colonization of inoculated A. africana seedlings when compared with control seedlings in forest soils. This fungus appeared to be more effective in increasing the root dry weight of A. africana seedlings. To identify the unknown introduced fungal species and native MT, we sequenced the ML5/ML6 region of the mitochondrial large subunit rRNA. Sequence analysis showed that these fungi belong to three ML5/ML6 groups closely related to the Cortinarioid, Thelephoroid, and Sclerodermataceous taxa. The molecular evidence for the persistence of Thelephoroid fungal sp. ORS.XM002 despite competition from native fungi argues in favor of using this fungus with A. africana in nursery soil conditions in Senegal.  相似文献   

14.
An extensive field trial was established on a fly ash deposit (1) to evaluate whether the inoculation with arbuscular mycorrhizal fungi (AMF) and/or ectomycorrhizal fungi (EcMF) improves growth and survival of 13 planted tree species and (2) to trace the inoculated mycorrhizal fungi in tree roots after one growing season. Molecular methods were applied to characterize AMF and EcMF entering the studied system (inocula, native soil, and roots of nursery seedlings). Biometric parameters and mortality of the trees were recorded and the presence of AMF and EcMF in sampled trees was determined both microscopically and genetically. Mycorrhizal inoculation did not improve survival or growth of any tree species. Most AMF‐host and all EcMF‐host seedlings were highly precolonized already from the nursery. An abundant and diverse AMF community was also found in the field soil. The AMF inoculum taxa partially overlapped with AMF in the native soil and in the precolonized roots. After one season, the only two inoculum‐unique AMF taxa were detected in host species non‐precolonized or only partially precolonized from the nursery. The components of EcMF inoculum were not detected in any sampled tree. After the season, the ectomycorrhizal hosts maintained most of their original EcMF taxa gathered in nursery, some tree species were additionally colonized by EcMF probably originating from the soil. Our results show considerable self‐restoration potential of nature on the target site. Mycorrhizal inoculation thus did not bring any conclusive advantage to the planted trees and seems superfluous for reclamation practice on the fly ash deposit.  相似文献   

15.
Forest management often results in changes in the soil and its microbial communities. In the present study, differences in the soil bacterial community caused by forest management practices were characterized using small subunit (SSU) ribosomal RNA (rRNA) gene clone libraries. The communities were from a native hardwood forest (HWD) and two adjacent conifer plantations in a low-elevation montane, subtropical experimental forest at the Lienhuachi Experimental Forest (LHCEF) in central Taiwan. At this locality, the elevation ranges from 600 to 950 m, the mean annual precipitation is 2,200 mm, the mean annual temperature is 20.8°C, and the soil pH is 4. The conifer forests included a Cunninghamia konishii Hay (CNH) plantation of 40 years and an old growth Calocedrus formosana (Florin) Florin (CLC) forest of 80 years. A total of 476 clones were sequenced and assigned into 12 phylogenetic groups. Proteobacteria-affiliated clones (53%) predominated in the library from HWD soils. In contrast, Acidobacteria was the most abundant phylum and comprised 39% and 57% in the CLC and CNH libraries, respectively. Similarly, the most abundant OTUs in HWD soils were greatly reduced or absent in the CLC and CNH soils. Based on several diversity indices, the numbers of abundant OTUs and singletons, and rarefaction curves, the diversity of the HWD community (0.95 in evenness and Shannon diversity indices) was somewhat less than that in the CNH soils (0.97 in evenness and Shannon diversity indices). The diversity of the community in CLC soils was intermediate. The differences in diversity among the three communities may also reflect changes in abundances of a few OTUs. The CNH forest soil community may be still in a successional phase that is only partially stabilized after 40 years. Analysis of molecular variance also revealed that the bacterial community composition of HWD soils was significantly different from CLC and CNH soils (p = 0.001). These results suggest that the disturbance of forest conversion and tree species composition are important factors influencing the soil bacterial community among three forest ecosystems in the same climate.  相似文献   

16.
Soil chronosequences provide an opportunity to examine the influence of long-term pedogenesis on the biomass and composition of associated tree communities. We assessed variation in the species composition of trees, saplings, and seedlings, and the basal area of adult trees, in lowland temperate rain forest along the Haast chronosequence on the west coast of the South Island of New Zealand. The sequence consists of Holocene dune ridges formed following periodic earthquake disturbance and is characterized by rapid podzol development, including a marked decline in phosphorus concentrations, accumulation of a thick organic horizon, and formation of a cemented iron pan. Tree basal area increased for the first few hundred years and then declined in parallel with the decline in total soil phosphorus, consistent with the concept of forest retrogression. There were also marked changes in the composition of the tree community, from dominance by conifers on young soils to a mixed conifer?Cangiosperm forest on old soils. Although a variety of factors could account for these changes, partial Mantel tests revealed strong correlations between tree community composition and soil nutrients. The relationships differed among life history stages, however, because the adult tree community composition was correlated strongly with nutrients in the mineral soil, whereas the seedling community composition was correlated with nutrients in the organic horizon, presumably reflecting differences in rooting depth. The changes in the tree community at Haast are consistent with disturbance-related succession in conifer?Cangiosperm forests in the region, but the opposite of patterns along the nearby Franz Josef post-glacial chronosequence, where conifers are most abundant on old soils. The Haast chronosequence is therefore an important additional example of forest retrogression linked to long-term soil phosphorus depletion, and provides evidence for the role of soil nutrients in determining the distribution of tree species during long-term succession in lowland temperate rain forests in New Zealand.  相似文献   

17.
In order to assess changes in the community structure of ectomycorrhizal fungi across the tree line, data on distributions of fungi and their host plants, as well as on edaphic factors and stand age, were collected at two montane sites in the Front Range of the Canadian Rockies. Canonical correspondence analysis (CCA) was used to explore relationships between fungal species composition and environmental factors. Richness and diversity of ectomycorrhizal fungi decreased with elevation, in spite of the fact that host plant diversity was highest at the ecotone between the subalpine forest and the alpine zone. Both host plant distribution and edaphic factors were important in explaining the observed changes in fungal species diversity and composition. The majority of ectotnycorrhizal fungi found in the subalpine forest and at the ecotone were conifer associates, while a large proportion of those in the alpine zone were non-host specific and able to form mycorrhizae with both angiosperms and gymnosperms. The abundance of non-host specific fungi in the alpine zone is expected to provide a favorable environment for the establishment of conifer seedlings above the present tree line.  相似文献   

18.
Summary Ectomycorrhizal short roots, mycelia, rhizomorphs and mats from conifer soil were examined in relation to their hydrophobic properties. In some cases connected fruit bodies were included in the study. Mycorrhizal soils gathered from the forest and/or colonized in a laboratory rhizoscope were studied, as were mycelia in pure culture. Most forest-derived species were hydrophobic. The drought-resistant Cenococcum geophilum and the more ruderal and moisture-dependent Thelephora terrestris were both strongly hydrophilic. The hydrophobic mycelium seemed solely responsible for the water repellence properties, and adjacent soil and plant debris remained unaffected and hydrophilic. In hydrophobic fungi, mat formation was induced in the rhizoscope by hyphal contact with alder litter leaves. This stimulating effect was not found when the leaves were covered by water or when fresh, green alder leaves were used. Thelephora terrestris did not form such mats in vitro and spread sparsely in air pockets as well as in the adjacent water film. The possibility is discussed that many mycorrhizal fungi in the forest may partly control their soil environment via aeration created by their hydrophobia.  相似文献   

19.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

20.
Vegetative inoculum of Amanita ovoidea (Bull.) Link and three isolates of Suillus collinitus (Fr.) Kuntze, as well as spore inoculum of Rhizopogon roseolus (Corda) Th. M. Fr. and S. collinitus, were evaluated for the production of Pinus halepensis Mill. in nursery and for the establishment of seedlings in a degraded gypsum soil. In nursery, most of the fungi significantly improved the height of seedlings and modified the accumulation of nutrients in needles. The percentage of ectomycorrhizas (ESR) per seedling ranged from 25 to 78%, depending on the fungi. One and 2 years after planting in the field, the survival of seedlings was significantly improved by inoculation with two isolates of S. collinitus and with spores of the same fungus. Inoculation with A. ovoidea had no significant effect on seedling survival, whilst R. roseolus caused a significant mortality of seedlings. Seedling height was significantly improved by inoculation with all fungi except R. roseolus and isolate CCMA-1 of S. collinitus. One year after planting, mycorrhization of control seedlings was negligible, and percentages of ESR were under 38% for the rest of treatments. In spring of the second year, seedlings in all treatments, including the control, became highly mycorrhizal (60–77% of ESR). Low ectomycorrhizal diversity (five morphotypes described) and seasonal variation on morphotype composition were detected 2 years after plantation. From a perspective of soil restoration management under limiting environmental conditions, nursery inoculation with selected fungi can be a key advantage for tree seedlings to surmount the initial transplant stress, assuring their establishment in the field. Our results emphasise the importance of selecting compatible fungal–host species combinations for nursery inoculation and sources of inoculum adapted to the environmental conditions of the transplantation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号