首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Length-dependent cruciform extrusion in d(GTAC)n sequences   总被引:1,自引:0,他引:1  
pBR322-derived plasmids have been constructed carrying d(GTAC)n.d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n.d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

3.
A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA   总被引:7,自引:0,他引:7  
We have constructed plasmids carrying d(AT)n.d(AT)n inserts of different lengths. Two-dimensional gel electrophoresis patterns show that an increase in the negative superhelicity of these DNAs brings about a structural transition within the inserts, resulting in a reduction of the superhelical stress. However, this reduction corresponds to the expected values neither for cruciform nor the Z form. Those DNA topoisomers in which the structural transition had occurred proved to be specifically recognizable by single-strand-specific endonuclease S1, with the cleavage site situated at the centre of the insert. These data, as well as kinetic studies, suggest that the cloned d(AT)n.d(AT)n sequences adopt a cruciform rather than the Z-form structure. We discuss plausible reasons of the discrepancy between the observed superhelical stress release and that expected for the transition of the insert to the cruciform state.  相似文献   

4.
Abstract

pBR322-derived plasmids have been constructed carrying d(GTAC)n·d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n·d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

5.
The transition from lineform DNA to cruciform DNA (cruciformation) within the cloned telomere sequences of the Leporipoxvirus Shope fibroma virus (SFV) has been studied. The viral telomere sequences have been cloned in recombination-deficient Escherichia coli as a 322 base-pair, imperfect palindromic insert in pUC13. The inverted repeat configuration is equivalent to the arrangement of the telomere structures observed within viral DNA replicative intermediates. A major cruciform structure in the purified recombinant plasmid has been identified and mapped using, as probes, the enzymes AflII, nuclease S1 and bacteriophage T7 endonuclease I. It was extruded from the central axis of the cloned viral inverted repeat and, by unrestricted branch migration, attained a size commensurate with the superhelical density of the plasmid molecule at native superhelical densities. This major cruciform extrusion event was the only detectable duplex DNA perturbation, induced by negative superhelical torsion, in the insert viral sequences. No significant steady-state pool of extruded cruciform was identified in E. coli. However, the identification of a major deletion variant generated even in the recombination-deficient E. coli strain DB1256 (recA recBC sbcB) suggested that the cruciform may be extruded transiently in vivo. The lineform to cruciform transition has been further characterized in vitro using two-dimensional agarose gel electrophoresis. The transition was marked by a high energy of formation (delta Gf = 44 kcal/mol), and an apparently low activation energy that enabled facile transitions at physiological temperatures provided there was sufficient torsional energy. By comparing cruciformation in a series of related bidirectional central axis deletions of the telomeric insert, it has been concluded that the presence of extrahelical bases in the terminal hairpin structures contributes substantially to the high delta Gf value. Also, viral sequences flanking the extruded cruciform were shown to influence the measured delta Gf value. Several general features of poxvirus telomere structure that would be expected to influence the facility of cruciform extrusion are discussed along with the implications of the observed cruciform transition event on the replicative process of poxviruses in vivo.  相似文献   

6.
Effect of DNA supercoiling on the geometry of holliday junctions   总被引:2,自引:0,他引:2  
Unusual DNA conformations including cruciforms play an important role in gene regulation and various DNA transactions. Cruciforms are also the models for Holliday junctions, the transient DNA conformations critically involved in DNA homologous and site-specific recombination, repair, and replication. Although the conformations of immobile Holliday junctions in linear DNA molecules have been analyzed with the use of various techniques, the role of DNA supercoiling has not been studied systematically. We utilized atomic force microscopy (AFM) to visualize cruciform geometry in plasmid DNA with different superhelical densities at various ionic conditions. Both folded and unfolded conformations of the cruciform were identified, and the data showed that DNA supercoiling shifts the equilibrium between folded and unfolded conformations of the cruciform toward the folded one. In topoisomers with low superhelical density, the population of the folded conformation is 50-80%, depending upon the ionic strength of the buffer and a type of cation added, whereas in the sample with high superhelical density, this population is as high as 98-100%. The time-lapse studies in aqueous solutions allowed us to observe the conformational transition of the cruciform directly. The time-dependent dynamics of the cruciform correlates with the structural changes revealed by the ensemble-averaged analysis of dry samples. Altogether, the data obtained show directly that DNA supercoiling is the major factor determining the Holliday junction conformation.  相似文献   

7.
The dependence of the crusiciform structure formation on superhelical density was studied by means of high resolution gel-electrophoresis. A short pAO3 DNA plasmid (1683 b. p.) which is a quarter of the ColE1 DNA plasmid and contains the main palindrome of ColE1 DNA was used. The excellent resolution of all topoisomers of pAO3 DNA in gel-electrophoresis made it possible to observe a sharp abruption in the pattern of pAO3 DNA topoisomers separation. The two-dimensional gel-electrophoresis data showed that observed abruption is caused by a sharp decrease of writhing in the molecules with superhelical density--sigma approximately equal to 0,05. An analysis of S1-nuclease digestion products of DNA with different superhelical density was accomplished and these data showed that a sharp structural transition in supercoiled DNA pAO3 is caused by formation of a cruciform structure in the main palindrome.  相似文献   

8.
The relative stability of the cruciform state at the large inverted repeat of plasmid pVH51 is measured. At physiological superhelical densities, the cruciform state is present in a high percentage of the plasmid molecules. Investigation of the relationship between negative superhelical density and cruciform prevalence reveals a sharp transition from an undetectable level to a relatively stable state. This transition occurs over the negative superhelical density range of 0.046 to 0.066. Estimates of the free energy contribution to cruciform formation resulting from loss of negative superhelical turns suggest that about 22 kcal/mol are required to generate the cruciform structure at this site in pVH51.  相似文献   

9.
Using agarose gel electrophoresis, the formation of DNA single-strand breaks (SSBs) by 137Cs gamma irradiation was quantified in negatively supercoiled topological isomers of plasmid pUC18. The G value for SSB formation falls slightly from 1 x 10(8) to 8 x 10(-9) SSB Gy-1 Da-1 as the superhelical density varies from 0.00 to -0.08. This result is not in agreement with recent observations by others which suggest that increasing the negative superhelical density of plasmid DNA increases its sensitivity to X irradiation.  相似文献   

10.
Abstract

We have constructed plasmids carrying d(AT)n·d(AT)n inserts of different lengths. Two- dimensional gel electrophoresis patterns show that an increase in the negative superhelicity of these DNAs brings about a structural transition within the inserts, resulting in a reduction of the superhelical stress. However, this reduction corresponds to the expected values neither for cruciform nor for the Z form. Those DNA topoisomers in which the structural transition had occurred proved to be specifically recognizable by single-strand-specific endonuclease SI, with the cleavage site situated at the centre of the insert. These data, as well as kinetic studies, suggest that the cloned d(AT)n·d(AT) n sequences adopt a cruciform rather than the Z-form structure. We discuss plausible reasons of the discrepancy between the observed superhelical stress release and that expected for the transition of the insert to the cruciform state.  相似文献   

11.
The energetics of the B-Z transition in DNA   总被引:6,自引:0,他引:6  
The paper deals with the energetics of the transition to left-handed Z form in DNA with an arbitrary base sequence. There is a brief outline of the statistical-mechanical model of the B-Z transition allowing for three possible states of each base pair. The parameters of the model can be determined by comparing the theory with experimental data for the B-Z transition in inserts with given sequences in circular DNA. The model contains six energy parameters, most of which have been determined before. In order to find the remaining parameters of the model and test its adequacy, a number of oligonucleotide sequences were synthesized and inserted into the pUC 19 plasmid. Two-dimensional gel electrophoresis was used to determine the superhelical density at which the inserts adopt the Z form. A statistical-mechanical treatment of these data yielded a complete set of six energy parameters for the B-Z transition. The theoretical assumption that the free energy of Z-form pairs does not depend on the type of adjacent pairs proved to be in agreement with the experimental data.  相似文献   

12.
Abstract

The paper deals with the energetics of the transition to left-handed Z form in DNA with an arbitrary base sequence. There is a brief outline of the statistical-mechanical model of the B-Z transition allowing for three possible states of each base pair. The parameters of the model can be determined by comparing the theory with experimental data for the B-Z transition in inserts with given sequences in circular DNA The model contains six energy parameters, most of which have been determined before. In order to find the remaining parameters of the model and test its adequacy, a number of oligonucleotide sequences were synthesized and inserted into the pUC 19 plasmid. Two-dimensional gel electrophoresis was used to determine the superhelical density at which the inserts adopt the Z form. A statistical-mechanical treatment of these data yielded a complete set of six energy parameters for the B-Z transition. The theoretical assumption that the free energy of Z-form pairs does not depend on the type of adjacent pairs proved to be in agreement with the experimental data.  相似文献   

13.
Limanskiĭ AP 《Biofizika》2000,45(6):1039-1043
Atomic force microscopy was used to visualize the cruciform structure in supercoiled plasmid pUC8 DNA immobilized on aminomodified mica. The cruciform hairpin was 14 base pairs in size, as determined from atomic force microscopy images of pUC8 DNA in air. Molecular modeling confirmed that the cruciform structure is formed by hairpins with self-complementary homopyrimidine-homopurine sequences (dT)8(dA)6 and a loop 4 nucleotides long.  相似文献   

14.
The absence of cruciform structures from pAO3 plasmid DNA in vivo   总被引:5,自引:0,他引:5  
We extracted pAO3 plasmid DNA from E. coli cells, having "frozen" the transition between cruciform and double-helical conformations in DNA. The characteristic feature of the DNA isolation procedure is that all steps were carried out at temperature between 0 and 4 C and no phenol deproteinization was used, since it has been discovered that phenol destabilizes cruciform structures in pAO3 DNA. Two-dimensional gel electrophoresis has revealed no cruciform structures in the pAO3 DNA preparations obtained this way, although the superhelical density of DNA was sufficient for them. Cruciform structures are absent from intracellular pAO3 DNA at all growth stages of the bacterial culture: stationary and logarithmic, and under the induction of pAO3 DNA replication in chloramphenicol-treated cells.  相似文献   

15.
We have inserted the 509-bp-long fragment of sea urchin P. miliaris histone gene spacer region into plasmid pUC19. The fragment contains the 60-bp-long homopurine-homopyrimidine tract that is known to be hypersensitive to the S1 endonuclease. Using two-dimensional gel electrophoresis we have observed a sharp structural transition in the insert with increasing DNA superhelicity. As in the cases of cruciform and Z form formation, the observed transition partly relaxes the superhelical stress. In contrast with the other two well documented transitions, the observed transition strongly depends on pH. At pH7 and above the transition occurs at negative superhelicities exceeding the physiological range (- sigma greater than 0.08). For pH6 the transition occurs at -sigma = 0.055, whereas for pH4.3 it takes place at -sigma = 0.001. A comprehensive analysis of the obtained data has made it possible to define the nature of the observed transition. We conclude that under superhelical stress or/and at low pH homopurinehomopyrimidine tracts adopt a novel spatial structure called the H form.  相似文献   

16.
A method for the separation of superhelical DNA on the basis of superhelical density by reverse-phase HPLC on RP-18 columns is described. The technique can be used to prepare superhelical DNA in milligram amounts and narrow topoisomer distributions in 0.1 mg amounts. We show example separations of the plasmids pUC18 (2687 bp) and pi AN13 (895 bp). While the best separation for pUC18 yields topoisomer distributions of two or three major components, the small plasmid can be separated into single topoisomer fractions. The basis of the separation is probably an interaction of partially opened bases with the hydrophobic column matrix. This hypothesis is supported by the elution behavior of DNA fragments on this column: DNA fragments with sticky ends, even at a length of several hundred base pairs, elute at much higher methanol concentrations than blunt-ended fragments.  相似文献   

17.
18.
Structural distortions on the boundary between right-handed and left-handed segments in the superhelical plasmid pPK2 (a derivative of pUC19 containing (dC-dG)n segments cloned into polylinker) were studied by means of chemical probes. Strong osmium tetroxide, pyridine (Os,py) modification of DNA at native superhelical density (sigma) was found in four thymines surrounding the (dC-dG)13 segment. These results correlated with restriction cleavage inhibition (due to modification): BamHI cleavage was strongly inhibited, unlike the neighbouring XbaI and SalI (weak or no inhibition). In the (dC-dG)8 segment considerably weaker modification of the B-Z junctions was observed, accompanied by weak inhibition of BamHI cleavage, while the neighbouring SmaI and KpnI were not affected. Os,py modification of DNA at native sigma was not detected by nuclease S1 cleavage at and (dC-dG)n segment. However, this enzyme recognized and cleaved at the B-Z junction, osmium modified at more negative sigma. The results obtained with the glyoxal and diethyl pyrocarbonate modification support the idea of very narrow B-Z junctions at native sigma.  相似文献   

19.
Abstract

We have inserted the 509-bp-long fragment of sea urchin P. miliaris histone gene spacer region into plasmid pUC19. The fragment contains the 60-bp-long homopurine-homopyrimidine tract that is known to be hypersensitive to the S1 endonuclease. Using two-dimensional gel electrophoresis we have observed a sharp structural transition in the insert with increasing DNA superhelicity. As in the cases of cruciform and Z form formation, the observed transition partly relaxes the superhelical stress. In contrast with the other two well documented transitions, the observed transition strongly depends on pH. At pH7 and above the transition occurs at negative superhelicities exceeding the physiological range (σ>0.08). For pH6 the transition occurs at ?σ = 0.055, whereas for pH4.3 it takes place at ?σ = 0.001. A comprehensive analysis of the obtained data has made it possible to define the nature of the observed transition. We conclude that under superhelical stress or/and at low pH homopurine- homopyrimidine tracts adopt a novel spatial structure called the H form.  相似文献   

20.
Abstract

We extracted pA03 plasmid DNA from E. coli cells, having “frozen” the transitions between cruciform and double-helical conformations in DNA. The characteristic feature of the DNA isolation procedure is that all steps were carried out at temperature between 0 and 4 C and no phenol deproteinization was used, since it has been discovered that phenol destabilizes cruciform structures in pA03 DNA. Two-dimensional gel electrophoresis has revealed no cruciform structures in the pA03 DNA preparations obtained this way, although the superhelical density of DNA was sufficient for them. Cruciform structures are absent from intracellular pA03 DNA at all growth stages of the bacterial culture: stationary and logarithmic, and under the induction of pA03 DNA replication in chloramphenicol-treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号