首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the capacity of macroparasites to control insect populations   总被引:1,自引:0,他引:1  
A graphical model of the population dynamics of macroparasites and their hosts is developed. Three principal means by which the parasites can be regulated are considered: reduction in host density as a result of parasite-induced host mortality, reduction in host density as a result of parasite-induced host sterility, and competition among parasites within multiply-infected hosts. The means by which parasites are regulated has a major effect on the degree to which they can depress host population densities. In particular, a parasite that sterilizes its host is expected to reduce host density more than one that causes an equivalent decline in host fitness through increased mortality. A special case of the model is developed for herbivorous insects that, in the absence of parasites, are limited by larval food resources. Parasites that are regulated via parasite-induced host sterility will control the insect populations below the level set by larval resources if the threshold host density for the parasites (N(T)) is less than the ratio of carrying capacity to net reproductive rate of the insects (K/R). Data are presented showing that all three means of parasite regulation, but especially parasite-induced host sterility, can operate in Howardula aoronymphium, a nematode parasite of mycophagous Drosophila flies. Data from a field cage experiment show that, if these nematodes are regulated primarily via reductions in host density due to this sterility, the parameters N(T), K, and R are such that Howardula is likely to play an important role in controlling Drosophila populations. However, this conclusion must be tempered by the fact that these nematodes also cause increased host mortality and experience within-host competition, making the conditions for parasite control of the flies more stringent.  相似文献   

2.
Host–parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host‐related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro‐ versus macroevolutionary dynamics in host–parasite interactions.  相似文献   

3.
Parasite–host interactions can drive periodic population dynamics when parasites overexploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite–host interactions, which may govern whether parasites sufficiently overexploit hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate‐killer parasite system with seasonal host activity to investigate the consequences of host phenology on host–parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling as they adapt, but only in some phenological scenarios such as environments with short seasons and synchronous host emergence. Furthermore, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to overexploit hosts and produce population cycles. Host‐parasite cycles also generate an eco‐evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes can be driven extinct due to a population bottleneck depending on when they are introduced in the cycle. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provide further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.  相似文献   

4.
Selection is recognized to operate on multiple levels. In disease organisms, selection among hosts is thought to provide an important counterbalance to selection for faster growth within hosts. We performed three experiments, each selecting for a divergence in group size in the entomopathogenic nematode, Steinernema carpocapsae. These nematodes infect and kill insect larvae, reproduce inside the host carcass, and emerge as infective juveniles. We imposed selection on group size by selecting among hosts for either high or low numbers of emerging nematodes. Our goal was to determine whether this trait could respond to selection at the group level, and if so, to examine what other traits would evolve as correlated responses. One of the three experiments showed a significant response to group selection. In that experiment, the high-selected treatment consistently produced more emerging nematodes per host than the low-selected treatment. In addition, nematodes were larger and they emerged later from hosts in the low-selected lines. Despite small effective population sizes, the effects of inbreeding were small in this experiment. Thus, selection among hosts can be effective, leading to both a direct evolutionary response at the population level, as well as to correlated responses in populational and individual traits.  相似文献   

5.
Synchronous population fluctuations occur in many species and have large economic impacts, but remain poorly understood. Dispersal, climate and natural enemies have been hypothesized to cause synchronous population fluctuations across large areas. For example, insect herbivores cause extensive forest defoliation and have many natural enemies, such as parasitoids, that may cause landscape‐scale changes in density. Between outbreaks, parasitoid‐caused mortality of hosts/herbivores is high, but it drops substantially during outbreak episodes. Because of their essential role in regulating herbivore populations, we need to include parasitoids in spatial modelling approaches to more effectively manage insect defoliation. However, classic host‐parasitoid population models predict parasitoid density, and parasitoid density is difficult to relate to host‐level observations of parasitoid‐caused mortality. We constructed a novel model to study how parasitoids affect insect outbreaks at the landscape scale. The model represents metacommunity dynamics, in which herbivore regulation, colonisation and extinction are driven by interactions with the forest, primary parasitoids and hyperparasitoids. The model suggests that parasitoid spatial dynamics can produce landscape‐scale outbreaks. Our results propose the testable prediction that hyperparasitoid prevalence should increase just before the onset of an outbreak because of hyperparasitoid overexploitation. If verified empirically, hyperparasitoid distribution could provide a biotic indicator that an outbreak will occur.  相似文献   

6.
In most host-parasite systems, variation in parasite burden among hosts drives transmission dynamics. Heavily infected individuals introduce disproportionate numbers of infective stages into host populations or surrounding environments, causing sharp increases in frequency of infection. Parasite aggregation within host populations may result from variation among hosts in exposure to infective propagules and probability of subsequent establishment of parasites in the host. This is because individual host heterogeneities contribute to a pattern of parasite overdispersion that emerges at the population level. We quantified relative roles of host exposure and parasite establishment in producing variation in parasite burdens, to predict which hosts are more likely to bear heavy burdens, using big brown bats (Eptesicus fuscus) and their helminths as a model system. We captured bats from seven colonies in Michigan and Indiana, USA, assessed their helminth burdens, and collected data on intrinsic and extrinsic variables related to exposure, establishment, or both. Digenetic trematodes had the highest prevalence and mean abundance while cestodes and nematodes had much lower prevalence and mean abundance. Structural equation modeling revealed that best-fitting models to explain variations in parasite burden included genetic heterozygosity and immunocompetence as well as distance to the nearest water source and the year of host capture. Thus, both differential host exposure and differential parasite establishment significantly influence heterogeneous helminth burdens, thus driving population-level patterns of parasite aggregation.  相似文献   

7.
ABSTRACT

The principle of competitive exclusion is well established for multiple populations competing for the same resource, and simple models for multistrain infection exhibit it as well when cross-immunity precludes coinfections. However, multiple hosts provide niches for different pathogens to occupy simultaneously. This is the case for the vector-borne parasite Trypanosoma cruzi in overlapping sylvatic transmission cycles in the Americas, where it is enzootic. This study uses cycles in the USA involving two different hosts but the same vector species as a context for the study of the mechanisms behind the communication between the two cycles. Vectors dispersing in search of new hosts may be considered to move between the two cycles (host switching) or, more simply, to divide their time between the two host types (host sharing). Analysis considers host switching as an intermediate case between isolated cycles and intermingled cycles (host sharing) in order to examine the role played by the host-switching rate in permitting coexistence of multiple strains in a single-host population. Results show that although the population dynamics (demographic equilibria) in host-switching models align well with those in the limiting models (host sharing or isolated cycles), infection dynamics differ significantly, in ways that sometimes illuminate the underlying epidemiology (such as differing host susceptibilities to infection) and sometimes reveal model limitations (such as host switching dominating the infection dynamics). Numerical work suggests that the model explains the trace presence of TcI in raccoons but not the more significant co-persistence observed in woodrats.  相似文献   

8.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Models of outbreaks in forest-defoliating insects are typically built from a priori considerations and tested only with long time series of abundances. We instead present a model built from experimental data on the gypsy moth and its nuclear polyhedrosis virus, which has been extensively tested with epidemic data. These data have identified key details of the gypsy moth-virus interaction that are missing from earlier models, including seasonality in host reproduction, delays between host infection and death, and heterogeneity among hosts in their susceptibility to the virus. Allowing for these details produces models in which annual epidemics are followed by bouts of reproduction among surviving hosts and leads to quite different conclusions than earlier models. First, these models suggest that pathogen-driven outbreaks in forest defoliators occur partly because newly hatched insect larvae have higher average susceptibility than do older larvae. Second, the models show that a combination of seasonality and delays between infection and death can lead to unstable cycles in the absence of a stabilizing mechanism; these cycles, however, are stabilized by the levels of heterogeneity in susceptibility that we have observed in our experimental data. Moreover, our experimental estimates of virus transmission rates and levels of heterogeneity in susceptibility in gypsy moth populations give model dynamics that closely approximate the dynamics of real gypsy moth populations. Although we built our models from data for gypsy moth, our models are, nevertheless, quite general. Our conclusions are therefore likely to be true, not just for other defoliator-pathogen interactions, but for many host-pathogen interactions in which seasonality plays an important role. Our models thus give qualitative insight into the dynamics of host-pathogen interactions, while providing a quantitative interpretation of our gypsy moth-virus data.  相似文献   

10.
Per Arneberg 《Ecography》2001,24(3):352-358
Epidemiological models predict a positive relationship between host population density and abundance of macroparasites. Here I lest these by a comparative study. I used data on communities of four groups of parasites inhabiting the gastrointestinal tract of mammals, nematodes of the orders Oxyurida. Ascarida. Enoplida and Spirurida. respectively. The data came from 44 mammalian species and represent examination of 16886 individual hosts. I studied average prevalence of all nematodes within an order in a host species, a measure of community level abundance, and considered the potential confounding effects of host body weight, fecundity, age at maturity and diet. Host population density was positively correlated with parasite prevalence within the order Oxyurida, where all species have direct life cycles. Considering the effects of other variables did not change this. This supports the assumption that parasite transmission rate generally is a positive function of host population density: It also strengthens the hypothesis that host densities generally act as important determinants of species richness among directly transmitted parasites and suggests that negative influence of such parasites on host population growth rate increase with increasing host population density among host species. Within the other three nematode orders, where a substantial number of the species have indirect life cycles, no relationships between prevalence and host population density were seen, Again. considering the effects of other variables did not affect this conclusion. This suggests that host population density is a poor predictor of species richness of indirectly transmitted parasites and that effects of such parasites on host population dynamics do not scale with host densities among species of hosts.  相似文献   

11.
1. Long‐term control of insects by parasites is possible only if the parasite populations persist. Because parasite transmission rate depends on host density, parasite populations may go extinct during periods of low host density. Vertical transmission of parasites, however, is independent of host density and may therefore provide a demographic bridge through times when their insect hosts are rare. 2. The nematode Howardula aoronymphium, which parasitises mycophagous species of Drosophila, can experience both horizontal and effectively vertical transmission, relative rates of which depend, in theory at least, on the density of hosts at breeding sites. 3. A nine‐generation experiment was carried out in which nematodes were transmitted either exclusively vertically or primarily horizontally. This experiment revealed that these parasites can persist and exhibit positive population growth even when there is only vertical transmission. 4. Assays at the end of the experiment revealed that the vertically transmitted nematodes had suffered no inbreeding depression and that they were similar to the horizontally transmitted nematodes in terms of virulence, infectivity, within‐host growth rate, and fecundity. Thus, vertical transmission of H. aoronymphium did not appear to compromise the ability of these parasites to control Drosophila populations.  相似文献   

12.
The nematode Skrjabinoptera phrynosoma is a stomach parasite of horned lizards in the genus Phrynosoma. This nematode demonstrates a distinctive life cycle wherein entire gravid females harboring infective eggs exit with lizard feces. Pogonomyrmex spp. harvester ants collect these females and feed them to their larvae, which are the only stages of the intermediate host that can become infected. We hypothesized that the seasonal dynamics of nematode abundance within lizard hosts would be correlated with the seasonal availability of suitable intermediate hosts. To describe seasonal variation of nematode population variables and elucidate the timing of critical events in the parasite life cycle, nematodes were collected from both hosts across three collection periods in the ant-and-lizard activity season of 2008 in the Alvord Basin of southeastern Oregon. Among 3 collection periods, and across the activity season, nematodes were harvested from individual Phrynosoma platyrhinos , and the distribution of developmental categories and body lengths of nematodes was analyzed to determine the seasonal change in nematode population composition. Pogonomyrmex spp. ants were collected in pit-fall traps and dissected to determine infection prevalence. The abundance of non-gravid female and juvenile nematodes collected from lizards' stomachs decreased significantly between the early and late collection period, which was likely a consequence of the sequential conversion of these developmental categories to gravid females. The presence of gravid female nematodes peaked in cloacal and fecal collections during mid-season. The body lengths of male nematodes increased as the activity season progressed, perhaps due to growth, but their abundance remained the same. Smaller juvenile nematodes were present in late-season collections from lizards, possibly indicating new acquisitions from infected ants. We propose that once a set population of male nematodes establishes in lizards' stomachs, newly acquired juvenile nematodes develop into non-gravid females that mate, become gravid females, and exit the lizard mid-season. We additionally suggest that the exit of females may be timed with the peak foraging activity of ant intermediate hosts and access to larval ants in the nests. Infection prevalence in the intermediate host was low, with only 1 of 6,000 dissected harvester ants containing a single larval nematode. The temporal dynamics of S. phrynosoma populations within P. platyrhinos at this northern locale is most likely driven by the seasonal availability of harvester ant intermediate hosts.  相似文献   

13.
1. Recent studies of rodent populations have demonstrated that certain parasites can cause juveniles to delay maturation until the next reproductive season. Furthermore, a variety of parasites may share the same host, and evidence is beginning to accumulate showing nonindependent effects of different infections. 2. We investigated the consequences for host population dynamics of a disease-induced period of no reproduction, and a chronic reduction in fecundity following recovery from infection (such as may be induced by secondary infections) using a modified SIR (susceptible, infected, recovered) model. We also included a seasonally varying birth rate as recent studies have demonstrated that seasonally varying parameters can have important effects on long-term host-parasite dynamics. We investigated the model predictions using parameters derived from five different cyclic rodent populations. 3. Delayed and reduced fecundity following recovery from infection have no effect on the ability of the disease to regulate the host population in the model as they have no effect on the basic reproductive rate. However, these factors can influence the long-term dynamics including whether or not they exhibit multiyear cycles. 4. The model predicts disease-induced multiyear cycles for a wide range of realistic parameter values. Host populations that recover relatively slowly following a disease-induced population crash are more likely to show multiyear cycles. Diseases for which the period of infection is brief, but full recovery of reproductive function is relatively slow, could generate large amplitude multiyear cycles of several years in length. Chronically reduced fecundity following recovery can also induce multiyear cycles, in support of previous theoretical studies. 5. When parameterized for cowpox virus in the cyclic field vole populations (Microtus agrestis) of Kielder Forest (northern England), the model predicts that the disease must chronically reduce host fecundity by more than 70%, following recovery from infection, for it to induce multiyear cycles. When the model predicts quasi-periodic multiyear cycles it also predicts that seroprevalence and the effective date of onset of the reproductive season are delayed density-dependent, two phenomena that have been recorded in the field.  相似文献   

14.
Parasite co-infection and interaction as drivers of host heterogeneity   总被引:1,自引:0,他引:1  
We examined the hypothesis that the interaction between concomitant infecting parasites modifies host susceptibility, parasite intensity and the pattern of parasite distribution within the host population. We used a 26 year time series of three common parasites in a natural population of rabbits: two gastrointestinal nematodes (Trichostrongylus retortaeformis and Graphidium strigosum) and the immunosuppressive myxoma virus. The frequency distribution of nematodes in the host population and the relationship between host age and nematode intensity were explored in rabbits with either single or dual nematode infections and rabbits infected with the nematodes and myxoma virus. The aggregation of T. retortaeformis and G. strigosum among the rabbits varied with the nature of the co-infection both in male and female hosts. The two nematodes exhibited different age-intensity profiles: G. strigosum intensity increased exponentially with host age while T. retortaeformis intensity exhibited a convex shape. The presence of a secondary infection did not change the age-intensity profile for G. strigosum but for T. retortaeformis co-infection (either both nematodes or myxoma-nematodes) resulted in significantly greater intensities in adult hosts. Results suggest that multi-species infections contributed to aggregation of parasites in the host population and to seasonal variation in intensity, but also enhanced differences in parasitism between sexes. This effect was apparent for T. retortaeformis, which appears to elicit a strong acquired immune response but not for G. strigosum which does not produce any evident immune reaction. We concluded that concomitant infections mediated by host immunity are important in modifying host susceptibility and influencing heterogeneity amongst individual hosts.  相似文献   

15.
Helminth parasites have the potential to significantly affect the dynamics of their hosts. As a consequence, they can dramatically threaten the persistence of endangered species, such as rock partridge Alectoris graeca saxatilis, found in the Province of Trento (northern Italy). The aim of this work was to understand the effect of helminth parasites on rock partridge fitness, and the subsequent potential effects on host population dynamics. In particular, we investigated the hypothesis that infections from Ascaridia compar induce rock partridge population cycles observed in Trentino. In order to support this hypothesis, we compared the predictions obtained from a host–parasite interaction model including variable parasite aggregation with multi‐annual empirical data of A. compar infection in natural host populations. We estimated host demographic parameters using rock partridge census data from Trentino, and the parasitological parameters from a series of experimental infections in a captive rock partridge population. The host–parasite model predicted higher A. compar abundance in rock partridge populations exhibiting cyclic dynamics compared to non‐cyclic ones. In addition, for cyclic host populations, the model predicted an increase in mean parasite burden with the length of cycle period. Model predictions were well‐supported by field data: significant differences in parasite infection between cyclic and non‐cyclic populations and among cyclic populations with different oscillation periods were observed. On the basis of these results, we conclude that helminth parasites can not be ruled out as drivers of rock partridge population dynamics in Trentino and must be considered when planning conservation strategies of this threatened species.  相似文献   

16.
Photorhabdus and Xenorhabdus bacteria colonize the intestines of the infective soil-dwelling stage of entomophagous nematodes, Heterorhabditis and Steinernema, respectively. These nematodes infect susceptible insect larvae and release the bacteria into the insect blood. The bacteria kill the insect larvae and convert the cadaver into a food source suitable for nematode growth and development. After several rounds of reproduction the nematodes are recolonized by the bacteria before emerging from the insect cadaver into the soil to search for a new host. Photorhabdus and Xenorhabdus bacteria therefore engage in both pathogenic and mutualistic interactions with different invertebrate hosts as obligate components of their life cycle. In this review we aim to describe current knowledge of the molecular mechanisms utilized by Photorhabdus and Xenorhabdus to control their host-dependent interactions. Recent work has established that there is a trade-off between pathogenicity and mutualism in both these species of bacteria suggesting that the transition between these interactions must be under regulatory control. Despite the superficial similarity between the life cycles of these bacteria, it is now apparent that the molecular components of the regulatory networks controlling pathogenicity and mutualism in Photorhabdus and Xenorhabdus are very different.  相似文献   

17.
Insects form the most species‐rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode–insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle–nematode–bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five‐year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high‐throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate‐reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect‐associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate‐reducing bacteria suggests a possible link between beetle–bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment.  相似文献   

18.
1. Heterogeneity of host behaviour can play an important role in the spread of parasites and pathogens around wildlife populations. Social networks have previously been suggested to represent transmission pathways within a population, but where the dynamics of host-parasite interactions are difficult to observe, networks may also be used to provide insights into transmission processes. 2. Pygmy bluetongue lizards, Tiliqua adelaidensis, occupy individual territories, live exclusively in burrows constructed by spiders in Australian native grasslands and are hosts to a tick, Bothriocroton hydrosauri, and a nematode, Pharyngodon wandillahensis. 3. On five monthly occasions, the locations of all individual lizards in three study plots were used to construct weighted, undirected networks based on proximity of adjacent burrows. 4. The networks were used to explore alternative hypotheses about the spread of each parasite through the population: that stable population members that remained in the same burrow over the study period played a major role in influencing the pattern of infection or that dispersing individuals played a more significant role. 5. For ticks, host individuals that were infected were more connected in the network than uninfected hosts and this relationship remained significant for connections to residents in the population, but not for connections to dispersers. 6. For nematodes, infected and uninfected hosts did not differ in their overall strength of connection in the network, but infected hosts were more connected to dispersers than were uninfected hosts, suggesting that lizards moving across the population are the major agents for the transmission of nematodes. 7. This study shows how network analyses can provide new insights into alternative pathways of parasite spread in wildlife populations, where it is difficult to make direct observations of transmission-related behaviours.  相似文献   

19.
Sexually transmitted diseases (STDs) of insects are known from the mites, nematodes, fungi, protists and viruses. In total 73 species of parasite and pathogen from approximately 182 species of host have been reported. Whereas nearly all vertebrate STDs are viruses or bacteria, the majority of insect STDs are multicellular ectoparasites, protistans or fungi. Insect STDs display a range of transmission modes, with 'pure' sexual transmission only described from ectoparasites, all of which are mites, fungi or nematodes, whereas the microparasitic endo-parasites tend to show vertical as well as sexual transmission. The distribution of STDs within taxa of insect hosts appears to be related to the life histories of the hosts. In particular, STDs will not be able to persist if host adult generations do not overlap unless they are also transmitted by some alternative route. This explains the observation that the Coleoptera seem to suffer from more STDs than other insect orders, since they tend to diapause as adults and are therefore more likely to have overlapping generations of adults in temperate regions. STDs of insects are often highly pathogenic, and are frequently responsible for sterilizing their hosts, a feature which is also found in mammalian STDs. This, combined with high prevalences indicates that STDs can be important in the evolution and ecology of their hosts. Although attempts to demonstrate mate choice for uninfected partners have so far failed it is likely that STDs have other effects on host mating behaviour, and there is evidence from a few systems that they might manipulate their hosts to cause them to mate more frequently. STDs may also play a part in sexual conflict, with males in some systems possibly gaining a selective advantage from transmitting certain STDs to females. STDs may well be important factors in host population dynamics, and some have the potential to be useful biological control agents, but empirical studies on these subjects are lacking.  相似文献   

20.
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号