首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tau and MAP1B are the main members of neuronal microtubule-associated proteins (MAPs), the functions of which have remained obscure because of a putative functional redundancy (Harada, A., K. Oguchi, S. Okabe, J. Kuno, S. Terada, T. Ohshima, R. Sato-Yoshitake, Y. Takei, T. Noda, and N. Hirokawa. 1994. Nature. 369:488-491; Takei, Y., S. Kondo, A. Harada, S. Inomata, T. Noda, and N. Hirokawa. 1997. J. Cell Biol. 137:1615-1626). To unmask the role of these proteins, we generated double-knockout mice with disrupted tau and map1b genes and compared their phenotypes with those of single-knockout mice. In the analysis of mice with a genetic background of predominantly C57Bl/6J, a hypoplastic commissural axon tract and disorganized neuronal layering were observed in the brains of the tau+/+map1b-/- mice. These phenotypes are markedly more severe in tau-/-map1b-/- double mutants, indicating that tau and MAP1B act in a synergistic fashion. Primary cultures of hippocampal neurons from tau-/-map1b-/- mice showed inhibited axonal elongation. In these cells, a generation of new axons via bundling of microtubules at the neck of the growth cones appeared to be disturbed. Cultured cerebellar neurons from tau-/-map1b-/- mice showed delayed neuronal migration concomitant with suppressed neurite elongation. These findings indicate the cooperative functions of tau and MAP1B in vivo in axonal elongation and neuronal migration as regulators of microtubule organization.  相似文献   

2.
The MAPs (microtubule-associated proteins) MAP1B and tau are well known for binding to microtubules and stabilizing these structures. An additional role for MAPs has emerged recently where they appear to participate in the regulation of transport of cargos on the microtubules found in axons. In this role, tau has been associated with the regulation of anterograde axonal transport. We now report that MAP1B is associated with the regulation of retrograde axonal transport of mitochondria. This finding potentially provides precise control of axonal transport by MAPs at several levels: controlling the anterograde or retrograde direction of transport depending on the type of MAP involved, controlling the speed of transport and controlling the stability of the microtubule tracks upon which transport occurs.  相似文献   

3.
4.
BACKGROUND: MAP2 and tau are abundant microtubule-associated proteins (MAPs) in neurons. The development of neuronal dendrites and axons requires a dynamic interaction between microtubules and actin filaments. MAPs represent good candidates to mediate such interactions. Although MAP2c and tau have similar, well-characterized microtubule binding activities, their actin interaction is poorly understood. RESULTS: Here, we show by using a cosedimentation assay that MAP2c binds F-actin. Upon actin binding, MAP2c organizes F-actin into closely packed actin bundles. Moreover, we show by using a deletion approach that MAP2c's microtubule binding domain (MTBD) is both necessary and sufficient for both F-actin binding and bundling activities. Surprisingly, even though the MAP2 and tau MTBDs share high sequence homology and possess similar microtubule binding activities, tau is unable to bind or bundle F-actin. Furthermore, experiments with chimeric proteins demonstrate that the actin binding activity fully correlates with the ability to promote neurite initiation in neuroblastoma cells. CONCLUSIONS: These results provide the first demonstration that the MAP2c and tau MTBD domains exhibit distinct properties, diverging in actin binding and neurite initiation activities. These results implicate a novel actin function for MAP2c in neuronal morphogenesis and furthermore suggest that actin interactions could contribute to functional differences between MAP2 and tau in neurons.  相似文献   

5.
Microtubule-associated proteins and the determination of neuronal form   总被引:5,自引:0,他引:5  
1. The assembly of microtubules is essential for the maintenance of both the extension and the radial symmetry of axons and dendrites. Microtubule-associated proteins (MAPs) are implicated in this function because they promote tubulin polymerization and because they appear to be involved in cross-linking microtubules in the neuritic cytoplasm. 2. In a variety of species high molecular weight MAP2 is found only in dendrites and MAP tau is found only is axons, indicating that certain MAPs are associated with specific aspects of neuronal morphology. 3. All neuronal MAPs that have been studied are under strong developmental regulation with either their form or abundance changing between developing and adult brain. In both rat and Xenopus the change from "early" to "late" MAP forms occurs concurrently with the cessation of axon and dendrite growth and the maturation of neuronal morphology. 4. In situations where neuronal growth persists in the adult, such as retinal photoreceptor cells and the olfactory system, "early" MAPs continue to be expressed in the adult brain. 5. These results implicate MAPs in neuronal morphogenesis and suggest that "early" MAPs are involved in axon and dendrite growth whereas the "late" MAPs are involved in the stabilization of their mature form.  相似文献   

6.
Although microtubules are known to play an important role in many cellular processes, they have been virtually neglected in fish. In this report, microtubule-associated proteins (MAPs) in fish (teleost) were characterized using antibodies (Abs) directed against the mammalian MAPs tau, MAP1A and B, and MAP 2. Two different populations of tau-like proteins (TLPs) were found in fish brain using the anti-tau Abs Tau-1, Tau-2, tau5', and tau3'. The TLPs that were recognized by Tau-1, Tau-2, and tau5' were (1) heat-stable; (2) the same molecular weight as mammalian TLPs: 59-62 kDa; (3) not enriched in microtubules prepared from catfish brain; and (4) localized to the cell body of neurons in fish brains. While the TLPs recognized by tau3' Abs were (1) heat-stable; (2) lower molecular weight than mammalian TLPs: 32-55 vs. 50-65 kDa; (3) enriched in microtubule fractions prepared from catfish brain, and (4) localized to the axons of neurons. These results are consistent with two different populations of TLPs being present in fish brains. While MAP2 was found to be approximately the same molecular weight, 250 kDa, in zebrafish and goldfish as in mammals and to be distributed to dendrites in the fish brain, both MAP1A and MAP1B were found to be about 25% the mass of their mammalian homologs. These results suggest that MAPS in fish have some characteristics similar to their mammalian counterparts, but also possess some unique properties that require further study to elucidate their function.  相似文献   

7.
Microtubule-associated protein 2 (MAP2) is a neuron-specific cytoskeletal protein enriched in dendrites and cell bodies. MAP2 regulates microtubule stability in a phosphorylation-dependent manner, which has been implicated in dendrite outgrowth and branching. We have previously reported that cholesterol deficiency causes tau phosphorylation and microtubule depolymerization in axons (Fan et al. 2001). To investigate whether cholesterol also modulates microtubule stability in dendrites by modulating MAP2 phosphorylation, we examined the effect of compactin, a 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and TU-2078 (TU), a squalene epoxidase inhibitor, on these parameters using cultured neurons. We have found that cholesterol deficiency induced by compactin and TU, inhibited dendrite outgrowth, but not of axons, and attenuated axonal branching. Dephosphorylation of MAP2 and microtubule depolymerization accompanied these alterations. The amount of protein phosphatase 2 A (PP2A) and its activity in association with microtubules were decreased, while those unbound to microtubules were increased. The synthesized ceramide levels and the total ceramide content were increased in these cholesterol-deficient neurons. These alterations caused by compactin were prevented by concurrent treatment of cultured neurons with beta-migrating very-low-density lipoproteins (beta-VLDL) or cholesterol. Taken together, we propose that cholesterol-deficiency causes a selective inhibition of dendrite outgrowth due to the decreased stability of microtubules as a result of inhibition of MAP2 phosphorylation.  相似文献   

8.
MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs). To gain insights into the function of MAP2 in vivo, we generated MAP2-deficient (map2(-/-)) mice. They developed without any apparent abnormalities, which indicates that MAP2 is dispensable in mouse survival. Because previous reports suggest a functional redundancy among MAPs, we next generated mice lacking both MAP2 and MAP1B to test their possible synergistic functions in vivo. Map2(-/-)map1b(-/-) mice died in their perinatal period. They showed not only fiber tract malformations but also disrupted cortical patterning caused by retarded neuronal migration. In spite of this, their cortical layer maintained an "inside-out" pattern. Detailed observation of primary cultures of hippocampal neurons from map2(-/-)map1b(-/-) mice revealed inhibited microtubule bundling and neurite elongation. In these neurons, synergistic effects caused by the loss of MAP2 and MAP1B were more apparent in dendrites than in axons. The spacing of microtubules was reduced significantly in map2(-/-)map1b(-/-) mice in vitro and in vivo. These results suggest that MAP2 and MAP1B have overlapping functions in neuronal migration and neurite outgrowth by organizing microtubules in developing neurons both for axonal and dendritic morphogenesis but more dominantly for dendritic morphogenesis.  相似文献   

9.
We have used monoclonal antibodies against each of the major mammalian brain microtubule-associated proteins (MAPs), MAP1, MAP2, MAP3, MAP5, and tau, to study the timing of appearance and the cytological distribution of these proteins during the development of the rat retina. Western blots of adult rat retina reveal MAPs that are characteristic of embryonic brain, i.e., MAP5 and the low-molecular-weight forms of MAP2 (MAP2c) and tau (juvenile tau). At the onset of neuronal differentiation within the embryonic retina, MAP5, MAP3, MAP2c, and tau are found in the perikarya or extending axons of ganglion cells. High-molecular-weight MAP2, a dendrite marker, does not appear in the retina until the second day of postnatal development, when ganglion cell dendrites ramify within the inner plexiform layer. MAP1, which is characteristic of adult brain, does not appear in the retina until 1 week after birth, and is limited to ganglion cells and their processes. In the adult retina, MAP5 and MAP2c are concentrated within the inner segments and cell bodies of photosensitive cells, whereas tau is found in horizontal cells and more internal cell layers. Since photosensitive cells are unique among retinal neurons in their constant regeneration of their primary processes, the photoreceptive outer segments, both MAP5 and MAP2c appear not only to be involved in events associated with the embryonic differentiation and growth of neurites, but also in process regeneration in adult neurons that maintain some embryonic characteristics.  相似文献   

10.
The distribution of tau in the mammalian central nervous system   总被引:68,自引:22,他引:68       下载免费PDF全文
We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in extracts and microtubules from an enriched gray matter region of the brain. On a per mole basis, twice-cycled microtubules from white matter contained three times more tau than did twice-cycled microtubules from gray matter. Immunohistochemical studies that compared the localization of tau with that of MAP2 and tubulin demonstrated that tau was restricted to axons, extending the results of the biochemical studies. Tau localization was not observed in glia, which indicated that, at least in brain, tau is neuron specific. These observations indicate that tau may help define a subpopulation of microtubules that is restricted to axons. Furthermore, the monoclonal antibody described in this report should prove very useful to investigators studying axonal sprouting and growth because it is an exclusive axonal marker.  相似文献   

11.
We examined the subcellular distribution of specific mRNAs in cultured sympathetic neurons. Under appropriate conditions, sympathetic neurons extend both axons and dendrites that are distinguishable by light microscopic and immunocytochemical criteria. In situ hybridization revealed a differential localization of mRNA within dendrites. mRNA encoding MAP2 was abundant in cell bodies and distributed nonhomogeneously throughout the dendritic compartment, but was not detected in axons. In contrast, mRNAs encoding GAP-43 and alpha-tubulin were restricted to the cell body and largely excluded from dendrites as well as axons. Detergent extraction revealed that most dendrite-associated mRNA encoding MAP2 was associated with the Triton X-100 insoluble fraction of the cell. The subset of mRNAs present in the dendritic compartment may encode proteins involved in the morphogenesis and remodeling of dendrites.  相似文献   

12.
Microtubule-associated-protein 1b (MAP1b) is abundant in neurons actively extending axons. MAP1b is present on microtubules throughout growing axons, but is preferentially concentrated on microtubule polymer in the distal axon and growth cone. Although MAP1b has been implicated in axon growth and pathfinding, its specific functions are not well understood. Biochemical and transfection studies suggest that MAP1b has microtubule-stabilizing activity, but recent studies with neurons genetically deficient in MAP1b have not confirmed this. We have explored MAP1b functions in growing sympathetic neurons using an acute inactivation approach. Neurons without axons were injected with polyclonal MAP1b antibodies and then stimulated to extend axons. Injected cells were compared to controls in terms of axon growth behavior and several properties of axonal microtubules. The injected antibodies rapidly and quantitatively sequestered MAP1b in the cell body, making it unavailable to perform its normal functions. This immunodepletion of MAP1b had no statistically significant effect on axon growth, the amount of microtubule polymer in the axon, and the relative tyrosinated tubulin content of this polymer, and this was true in sympathetic neurons from rat, wild type mice, and tau knockout mice. Thus, robust axon growth can occur in the absence of MAP1b alone or both MAP1b and tau. However, immunodepletion of MAP1b significantly increased the sensitivity of microtubules in the distal axon and growth cone to nocodazole-induced depolymerization. These results indicate that MAP1b has microtubule-stabilizing activity in growing axons. This stabilizing activity may be required for some axonal functions, but it is not necessary for axon growth.  相似文献   

13.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

14.
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

15.
《朊病毒》2013,7(4):334-338
The aggregation of PrPSc is thought to be crucial for the neuropathology of prion diseases. A growing body of evidence demonstrates that the perturbation of the microtubule network contributes to PrPSc-mediated neurodegeneration. Microtubules are a component of the cytoskeleton and play a central role in organelle transport, axonal elongation and cellular architecture in neurons. The polymerization, stabilization, arrangement of microtubules can be modulated by interactions with a series of microtubule-associated proteins (MAPs). Recent studies have proposed the abnormal alterations of two major microtubule-associated proteins, tau and MAP2, in the brain tissues of naturally occurred and experimental human and animal prion diseases. Increased total tau protein and hyperphosphorylation of tau at multiple residues are observed at the terminal stage of prion disease. The abnormal aggregation of tau protein disturbs its binding ability to microtubules and affects the microtubule dynamic. Significantly downregulated MAP2 is detected in the brain tissues of scrapie-infected hamsters and PrP106–126 treated cells, which corresponds well with the remarkably low levels of tubulin. In conclusion, dysfunction of MAP2/tau family leads to disruption of microtubule structure and impairment of axonal transport, and eventually triggers apoptosis in neurons, which becomes an essential pathway for prion to induce the neuropathology.  相似文献   

16.
Microtubule-associated proteins (MAPs) in neurons establish functional associations with microtubules, sometimes at considerable distances from their site of synthesis. In this study we identified MAP 1A in mouse retinal ganglion cells and characterized for the first time its in vivo dynamics in relation to axonally transported tubulin. A soluble 340-kD polypeptide was strongly radiolabeled in ganglion cells after intravitreal injection of [35S]methionine or [3H]proline. This polypeptide was identified as MAP 1A on the basis of its co-migration on SDS gels with MAP 1A from brain microtubules; its co-assembly with microtubules in the presence of taxol or during cycles of assembly-disassembly; and its cross-reaction with well-characterized antibodies against MAP 1A in immunoblotting and immunoprecipitation assays. Glial cells of the optic nerve synthesized considerably less MAP 1A than neurons. The axoplasmic transport of MAP 1A differed from that of tubulin. Using two separate methods, we observed that MAP 1A advanced along optic axons at a rate of 1.0-1.2 mm/d, a rate typical of the Group IV (SCb) phase of transport, while tubulin moved 0.1-0.2 mm/d, a group V (SCa) transport rate. At least 13% of the newly synthesized MAP 1A entering optic axons was incorporated uniformly along axons into stationary axonal structures. The half-residence time of stationary MAP 1A in axons (55-60 d) was 4.6 times longer than that of MAP 1A moving in Group IV, indicating that at least 44% of the total MAP 1A in axons is stationary. These results demonstrate that cytoskeletal proteins that become functionally associated with each other in axons may be delivered to these sites at different transport rates. Stable associations between axonal constituents moving at different velocities could develop when these elements leave the transport vector and incorporate into the stationary cytoskeleton.  相似文献   

17.
We have used cultured sympathetic neurons to identify microtubule proteins (tubulin and microtubule-associated proteins [MAPs]) and neurofilament (NF) proteins in pure preparations of axons and also to examine the distribution of these proteins between axons and cell bodies + dendrites. Pieces of sympathetic ganglia containing thousands of neurons were plated onto culture dishes and allowed to extend neurites. Dendrites remained confined to the ganglionic explant or cell body mass (CBM), while axons extended away from the CBM for several millimeters. Axons were separated from cell bodies and dendrites by dissecting the CBM away from cultures, and the resulting axonal and CBM preparations were analyzed using biochemical, immunoblotting, and immunoprecipitation methods. Cultures were used after 17 d in vitro, when 40-60% of total protein was in the axons. The 68,000-mol-wt NF subunit is present in both axons and CBM in roughly equal amounts. The 145,000- and 200,000-mol-wt NF subunits each consist of several variants which differ in phosphorylation state; poorly and nonphosphorylated species are present only in the CBM, whereas more heavily phosphorylated forms are present in axons and, to a lesser extent, the CBM. One 145,000-mol-wt NF variant was axon specific. Tubulin is roughly equally distributed between CBM and axon-like neurites of explant cultures. MAP-1a, MAP-1b, MAP-3, and the 60,000-mol-wt MAP are also present in the CBM and axon-like neurites and show distribution patterns similar to that of tubulin. In contrast, MAP-2 was detected only in the CBM, while tau and the 210,000-mol-wt MAP were greatly enriched in axons compared to the CBM. In immunostaining analyses, MAP-2 localized to cell bodies and dendrite-like neurites, but not to axon-like neurites, whereas antibodies to tubulin and MAP-1b localized to all regions of the neurons. The regional differences in composition of the neuronal cytoskeleton presumably generate corresponding differences in its structure, which may, in turn, contribute to the morphological differences between axons and dendrites.  相似文献   

18.
We have examined the distribution of microtubule-associated protein 2 (MAP2) in the lumbar segment of spinal cord, ventral and dorsal roots, and dorsal root ganglia of control and beta,beta'-iminodipropionitrile- treated rats. The peroxidase-antiperoxidase technique was used for light and electron microscopic immunohistochemical studies with two monoclonal antibodies directed against different epitopes of Chinese hamster brain MAP2, designated AP9 and AP13. MAP2 immunoreactivity was present in axons of spinal motor neurons, but was not detected in axons of white matter tracts of spinal cord and in the majority of axons of the dorsal root. A gradient of staining intensity among dendrites, cell bodies, and axons of spinal motor neurons was present, with dendrites staining most intensely and axons the least. While dendrites and cell bodies of all neurons in the spinal cord were intensely positive, neurons of the dorsal root ganglia were variably stained. The axons of labeled dorsal root ganglion cells were intensely labeled up to their bifurcation; beyond this point, while only occasional central processes in dorsal roots were weakly stained, the majority of peripheral processes in spinal nerves were positive. beta,beta'- Iminodipropionitrile produced segregation of microtubules and membranous organelles from neurofilaments in the peripheral nervous system portion and accumulation of neurofilaments in the central nervous system portion of spinal motor axons. While both anti-MAP2 hybridoma antibodies co-localized with microtubules in the central nervous system portion, only one co-localized with microtubules in the peripheral nervous system portion of spinal motor axons, while the other antibody co-localized with neurofilaments and did not stain the central region of the axon which contained microtubules. These findings suggest that (a) MAP2 is present in axons of spinal motor neurons, albeit in a lower concentration or in a different form than is present in dendrites, and (b) the MAP2 in axons interacts with both microtubules and neurofilaments.  相似文献   

19.
Two monoclonal antibodies, 5E6 and 1B6, were raised against microtubule-associated protein 1B (MAP1B), a major component of the neuronal cytoskeleton. 5E6 recognized the entire MAP1B population, while 1B6 detected only phosphorylated forms. Affinity-purified MAP1B appeared as a long, filamentous molecule (186 +/- 38 nm) with a small spherical portion at one end, forming long cross-bridges between microtubules in vitro. These results, together with in vivo data from immunogold methods, demonstrate that MAP1B is a component of cross-bridges between microtubules in neurons. By immunohistochemical analysis, phosphorylated forms were shown to exist mainly in axons, whereas unphosphorylated forms were limited to cell bodies and dendrites. Phosphorylated MAP1B was quite abundant in developing axons, suggesting its essential role in axonal elongation.  相似文献   

20.
Neuronal morphogenesis depends on the organization of cytoskeletal elements among which microtubules play a very important role. The organization of microtubules is controlled by the presence of microtubule-associated proteins (MAPs), the activity of which is modulated by phosphorylation and dephosphorylation. One of these MAPs is MAP1B, which is very abundant within growing axons of developing neurons where it is found phosphorylated by several protein kinases including CK2. The expression of MAP1B is notably decreased after neuronal maturation in parallel with a change in the localization of the protein, which becomes largely concentrated in neuronal cell bodies and dendrites. Interestingly, MAP1B remains highly phosphorylated at sites targeted by protein kinase CK2 in mature neurons.We have analyzed the expression and localization of CK2 catalytic subunits along neuronal development. CK2 subunit appears early during development whereas CK2 subunit appears within mature neurons at the time of dendrite maturation and synaptogenesis, in parallel with the change in the localization of MAP1B. CK2 subunit is found associated with microtubule preparations obtained from either grey matter or white matter from adult bovine brain, whereas CK2 subunit is highly enriched in microtubules obtained from grey matter. These results lend support to the hypothesis that CK2 subunit is concentrated in neuronal cell bodies and dendrites, where it associates with microtubules, thus contributing to the increased phosphorylation of MAP1B in this localization in mature neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号