首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Activation of type I collagen genes in cultured scleroderma fibroblasts   总被引:2,自引:0,他引:2  
Fibroblasts cultured from affected skin areas of five patients with cutaneous scleroderma were found to produce increased amounts of collagen when compared with nonaffected control cells. Total RNA was isolated from the cultures and analyzed for its level of pro alpha 1 (I)collagen mRNA by hybridization of RNA blots with a cloned cDNA probe. The levels of pro alpha 1 (I)collagen mRNAs relative to total RNA were two- to sixfold higher in the samples from affected cells, accounting for the increased synthesis of type I collagen. Cytoplasmic dot hybridizations were performed to measure the cellular content of pro alpha 1 (I)collagen mRNA: up to ninefold increases in the level of this mRNA per cell were found. Upon subculturing, scleroderma fibroblasts were found to reduce gradually the increased synthesis of collagen to the level of nonaffected controls by the tenth passage. The levels of type I collagen mRNAs were also reduced, but more slowly. The results suggest that in scleroderma fibroblasts the genes for type I collagen are activated at procollagen mRNA level or that they are more stable and that the activating factors are lost during prolonged cell culture because cells from affected areas lose their activated state.  相似文献   

3.
Glucocorticoids decrease the synthesis of type I procollagen mRNAs   总被引:2,自引:0,他引:2  
Glucocorticoids selectively decrease procollagen synthesis in animal and human skin fibroblasts. beta-Actin content and beta-actin mRNA are not affected by glucocorticoid treatment of chick skin fibroblasts. The inhibitory effect of glucocorticoids on procollagen synthesis is associated with a decrease in total cellular type I procollagen mRNAs in chick skin fibroblasts. These effects of dexamethasone are receptor mediated as determined by pretreatment with the glucocorticoid antagonists progesterone and RU-486 and with the agonist beta-dihydrocortisol. Dexamethasone has a small but significant inhibitory effect on cell growth of chick skin fibroblasts. The ability of this corticosteroid to decrease the steady-state levels of type I procollagen mRNAs in nuclei, cytoplasm, and polysomes varies. The largest decrease of type I procollagen mRNAs is observed in the nuclear and cytoplasmic subcellular fractions 24 h after dexamethasone treatment. Type I procollagen hnRNAs are also decreased as determined by Northern blot analysis of total nuclear RNA. The synthesis of total cellular type I procollagen mRNAs is reversibly decreased by dexamethasone treatment. In addition the synthesis of total nuclear type I procollagen mRNA sequences is decreased at 2, 4, and 24 h following the addition of radioactive nucleoside and dexamethasone to cell cultures. Although the synthesis of pro alpha 1(I) and pro alpha 2(I) mRNAs is decreased in dexamethasone-treated chick skin fibroblasts, the degradation of the total cellular procollagen mRNAs is not altered while the degradation of total cellular RNA is stabilized. These data indicate that the dexamethasone-mediated decrease of procollagen synthesis in embryonic chick skin fibroblasts results from the regulation of procollagen gene expression.  相似文献   

4.
5.
Bleomycin treatment of primary chick skin fibroblasts and chick lung fibroblasts resulted in a selective dose-dependent increase of cell layer procollagen synthesis. Solid support hybridization of total cellular RNA to 32P-labeled pro-alpha 1(I) and pro-alpha 2(I) cDNAs did not indicate an increase of total cellular procollagen type I mRNAs in bleomycin-treated cells. However, bleomycin treatment of chick skin fibroblasts causes a redistribution of procollagen type I mRNAs within the nuclear, cytoplasmic, and polysomal subcellular fractions. Both the nuclear and cytoplasmic procollagen type I mRNAs are significantly decreased in concentration after bleomycin administration. In contrast, the polysomal procollagen type I mRNAs are significantly increased in both chick skin and lung fibroblasts treated with bleomycin. Administration of dexamethasone to bleomycin-treated fibroblasts resulted in a reversal of the bleomycin-induced increase in cell layer procollagen synthesis. The increased amounts of polysomal procollagen type I mRNAs in bleomycin-treated cells were also reduced by subsequent administration of dexamethasone. These data indicate that bleomycin treatment of chick skin and chick lung fibroblasts results in a specific increase in procollagen synthesis in the cell layer which is mediated by elevated levels of polysomal type I procollagen mRNAs via a repartitioning of these mRNAs within the fibroblast. Furthermore, dexamethasone reverses the bleomycin-induced elevations of both cell layer procollagen synthesis and polysomal type I procollagen mRNAs.  相似文献   

6.
M A Zern  M A Saber  D A Shafritz 《Biochemistry》1983,22(26):6072-6077
Mice infected with Schistosoma mansoni and littermate controls were evaluated serially for 12 weeks. Infected mice gained weight at the same rate as controls, but starting with the sixth week their livers became enlarged with granulomas and fibrous tissue, and they developed hypoalbuminemia. To evaluate the regulation of the albumin and type I collagen gene expression, total RNA was isolated from infected and control mice and translated in an mRNA-dependent rabbit reticulocyte lysate system. Protein synthesis was decreased 1.5-3-fold with RNA from infected vs. control liver. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell-free products showed a reduction in albumin but an increase in type I procollagen synthesis in infected mice. Immunoprecipitation of the cell-free product confirmed that albumin synthesis was reduced in greater proportion than other liver proteins in schistosome-infected mice. Hybridization of RNA from infected liver with cloned mouse albumin cDNA (pmalb-2) demonstrated a reduction in albumin mRNA to 37% of control, while hybridization with a chick type I pro alpha 2 collagen cDNA probe (pCg-45) revealed increased procollagen mRNA in infected liver beginning at 6 weeks postinfection. These results suggest that in murine schistosomiasis a reduction in biologically active albumin mRNA results in decreased albumin synthesis and may be responsible in part for hypoalbuminemia. In addition, increased collagen mRNA is associated with increased collagen synthesis during hepatic fibrosis.  相似文献   

7.
8.
Expression of type I and III procollagen genes was studied in embryonic chicken myoblast cell cultures, obtained from thigh muscles of 11-day-old embryos. Differentiation initiated by the addition of ovotransferrin (30 micrograms/ml) was followed visually by phase-contrast microscopy. Myoblast fusion and myotube formation were detected by day 3 and appeared to be complete by day 7. The synthesis of procollagens was monitored by labeling cell cultures for 1 h with [3H]proline and determining the radioactivity in procollagen chains by scanning densitometry of the fluorograms of the sodium dodecyl sulfate-polyacrylamide gels. A 10- to 20-fold increase in the rate of pro alpha-1(I), pro alpha-2(I), and pro alpha-1(III) collagen synthesis was observed, with the greatest increase occurring between days 3 and 9. Collagen mRNA levels in the myoblast cultures were examined by Northern blot and dot blot hybridization assays. The 10- to 20-fold increased rate of protein synthesis was accompanied by a 15-fold increase in the steady-state levels of pro alpha-1(I) and pro alpha-2(I) mRNAs and a 10-fold increase in the steady-state levels of pro alpha-1(III). As a correlate to the studies of collagen expression during myoblast differentiation, the expression of actin mRNAs was examined. Although alpha actin could be detected by day 4, a complete switch from lambda and beta to alpha actin was not observed in the time periods examined. Similar results were obtained in the analysis of RNA extracted from embryonic legs at days 12 and 17 of gestation. Myoblast differentiation is manifested by the accumulation of both muscle-specific mRNAs, such as actin, and type I and III procollagen mRNAs.  相似文献   

9.
Hsp47 is a heat stress protein that interacts with procollagen in the lumen of the endoplasmic reticulum, which is vital for collagen elaboration and embryonic viability. The precise actions of Hsp47 remain unclear, however. To evaluate the effects of Hsp47 on collagen production we infected human vascular smooth muscle cells (SMCs) with a retrovirus containing Hsp47 cDNA. SMCs overexpressing Hsp47 secreted type I procollagen faster than SMCs transduced with empty vector, yielding a greater accumulation of pro alpha1(I) collagen in the extracellular milieu. Interestingly, the amount of intracellular pro alpha1(I) collagen was also increased. This was associated with an unexpected increase in the rate of pro alpha1(I) collagen chain synthesis and 2.5-fold increase in pro alpha1(I) collagen mRNA expression, without a change in fibronectin expression. This amplification of procollagen expression, synthesis, and secretion by Hsp47 imparted SMCs with an enhanced capacity to elaborate a fibrillar collagen network. The effects of Hsp47 were qualitatively distinct from, and independent of, those of ascorbate and the combination of both factors yielded an even more intricate fibril network. Given the in vitro impact of altered Hsp47 expression on procollagen production, we sought evidence for interindividual variability in Hsp47 expression and identified a common, single nucleotide polymorphism in the Hsp47 gene promoter among African Americans that significantly reduced promoter activity. Together, these findings indicate a novel means by which type I collagen production is regulated by the endoplasmic reticulum constituent, Hsp47, and suggest a potential basis for inherent differences in collagen production within the population.  相似文献   

10.
Carbon tetrachloride-induced liver damage is a well-characterized experimental model for studying liver fibrosis. We used this model to examine alpha 1(I), alpha 1(III), and alpha 1(IV) procollagen mRNA levels during the development of liver fibrosis. Rats were given 0.5 ml of carbon tetrachloride/kg of body weight for 1-6 weeks. The liver tissue was assayed for collagen content by measuring total hydroxyproline content. Specific increases in procollagen mRNAs were assayed by slot blot hybridization. There was a significant increase in hydroxyproline content of liver tissue following 3 weeks of carbon tetrachloride treatment. The increase in tissue collagen content correlated with an increase in alpha 1(I) procollagen mRNA levels. At 5 and 6 weeks of treatment, there was an increase in alpha 1(III) procollagen mRNA levels. alpha 1(IV) procollagen levels increased slightly with five injections of carbon tetrachloride treatment. These results suggest that specific increases in procollagen mRNAs in liver fibrosis parallel, but do not precede, increases in tissue collagen content.  相似文献   

11.
12.
Interleukin-1 (IL-1) is synthesized by and released from macrophages in response to a variety of stimuli and appears to play an essential role in virtually all inflammatory conditions. In tissues of mesenchymal origin (e.g., cartilage, muscle, bone, and soft connective tissue) IL-1 induces changes characteristic of both destructive as well as reparative phenomena. Previous studies with natural IL-1 of varying degrees of purity have suggested that it is capable of modulating a number of biological activities of fibroblasts. We have compared the effects of purified human recombinant (hr) IL-1 alpha and beta on several fibroblast functions. The parameters studied include cell proliferation, chemotaxis, and production of collagen, collagenase, tissue inhibitor of metalloproteinase (TIMP), and prostaglandin (PG) E2. We observed that hrIL-1s stimulate the synthesis and accumulation of type I procollagen chains. Intracellular degradation of collagen is not altered by the hrIL-1s. Both IL-1s were observed to increase the steady-state levels of pro alpha 1(I) and pro alpha 2(I) mRNAs, indicating that they exert control of type I procollagen gene expression at the pretranslational level. We found that both hrIL-1 alpha and beta stimulate synthesis of TIMP, collagenase, PGE2, and growth of fibroblasts in vitro but are not chemotactic for fibroblasts. Although hrIl-1 alpha and beta both are able to stimulate production of PGE2 by fibroblasts, inhibition of prostaglandin synthesis by indomethacin has no measurable effect on the ability of the IL-1s to stimulate cell growth or production of collagen and collagenase. Each of the IL-1s stimulated proliferation and collagen production by fibroblasts to a similar degree, however hrIL-1 beta was found to be less potent than hrIL-1 alpha in stimulating PGE2 production. These observations support the notion that IL-1 alpha and beta may both modulate the degradation of collagen at sites of tissue injury by virtue of their ability to stimulate collagenase and PGE2 production by fibroblasts. Furthermore, IL-1 alpha and beta might also direct reparative functions of fibroblasts by stimulating their proliferation and synthesis of collagen and TIMP.  相似文献   

13.
Poly A containing RNA isolated from embryonic chick calvaria was transferred from 6% formaldehyde 0.75% agarose gels to diazobenzyloxymethyl paper and the paper then hybridized to either nick translated pro alpha 1 collagen cDNA clones, pCg1 or pCg54, or to the nick translated pro alpha 2 collagen cDNA clone, pCg45. From the mobilities of the bands hybridizing most strongly to each, pro alpha 2 collagen mRNA was shown to be slightly larger than pro alpha 1 mRNA; they are 5100 and 4900 nucleotides long respectively. pCg54 also hybridized weakly to two bands of lower mobility, corresponding to RNAs 6.4 and 5.6 kb long. Neither pCg54 nor pCg45 hybridized to type II procollagen mRNA in poly A containing RNA isolated from embryonic chick sterna.  相似文献   

14.
15.
Cultured human articular and costal chondrocytes were used as a model system to examine the effects of recombinant gamma-interferon (IFN-gamma) on synthesis of procollagens, the steady state levels of types I and II procollagen mRNAs, and the expression of major histocompatibility complex class II (Ia-like) antigens on the cell surface. Adult articular chondrocytes synthesized mainly type II collagen during weeks 1-3 of primary culture, whereas types I and III collagens were also produced after longer incubation and predominated after the first subculture. Juvenile costal chondrocytes synthesized no detectable alpha 2(I) collagen chains until after week 1 of primary culture; type II collagen was the predominant species even after weeks of culture. The relative amounts of types I and II collagens synthesized were reflected in the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. In articular chondrocytes, the levels of alpha 1(I) procollagen mRNA were disproportionately low (alpha 1(I)/alpha 2(I) less than 1.0) compared with costal chondrocytes (alpha 1 (I)/alpha 2(I) approximately 2). Recombinant IFN-gamma (0.1-100 units/ml) inhibited synthesis of type II as well as types I and III collagens associated with suppression of the levels of alpha 1(I), alpha 2(I), and alpha 1(II) procollagen mRNAs. IFN-gamma suppressed the levels of alpha 1(I) and alpha 1(II) procollagen mRNAs to a greater extent than alpha 2(I) procollagen mRNA in articular but not in costal chondrocytes. Human leukocyte interferon (IFN-alpha) at 1000 units/ml suppressed collagen synthesis and procollagen mRNA levels to a similar extent as IFN-gamma at 1.0 unit/ml. In addition, IFN-gamma but not IFN-alpha induced the expression of HLA-DR antigens on intact cells. The lymphokine IFN-gamma could, therefore, have a role in suppressing cartilage matrix synthesis in vivo under conditions in which the chondrocytes are in proximity to T lymphocytes and their products.  相似文献   

16.
Human hepatoma cell lines were shown for the first time to contain various types of procollagen mRNAs. The amounts and types of procollagen mRNAs differed depending on the cell lines. Pro alpha 1 (III) and pro alpha 1 (IV) collagen mRNAs were present in PLC/PRF/5, a hepatocellular carcinoma cell line, whereas pro alpha 1 (I), pro alpha 2 (I), pro alpha 1 (IV) and pro alpha 2 (V) collagen genes contrast, HepG2 cells derived from hepatoblastoma contained little, if any, mRNAs for these types of procollagens we had examined.  相似文献   

17.
The effect of hypertonic conditions on RNA synthesis in cultured chick embryo cells was examined. The appearance of newly synthesized 28 S, 18 S, and 4 S and 5 S RNA into the cytoplasm was found to be decreased by hypertonic conditions. The appearance of newly synthesized poly(A)+ RNA into the cytoplasm was also found to be depressed. To examine the behavior of a specific mRNA, nuclear and cytoplasmic levels of procollagen alpha 2(I) mRNA were measured during high salt treatment. While nuclear levels of this mRNA were found to increase, those of the cytoplasm fell markedly. S1 nuclease digestion studies of an intron flanked by two exons revealed that the pro alpha 2(I) collagen nuclear RNA that accumulated under hypertonic conditions was spliced. The nuclear accumulation of mRNA appears therefore to be due to a hypertonic block of nuclear-cytoplasmic transport, and not to an inhibition of RNA splicing.  相似文献   

18.
We have developed a strategy for the detection, localization and sequence determination of point mutations in the mRNA coding for the alpha 1(I) and alpha 2(I) chains of type I collagen. Point mutations are detected by RNase A cleavage of mismatches in RNA/RNA hybrids. The mRNAs coding for the fibrillar collagens present special problems for hybrid analysis because of their large size and their GC-rich and repetitive sequences. We have generated a series of overlapping antisense riboprobes covering the entire pro alpha 1(I) and pro alpha 2(I) mRNAs. Uniformly labelled normal antisense riboprobes are hybridized with the total fibroblast RNA of patients with possible mutations in type I collagen. Mismatches in the resulting RNA/RNA hybrids are cleaved with RNase A and the labelled riboprobe cleavage products are examined electrophoretically. The sensitivity and specificity of the system were demonstrated by the detection and localization of a known point mutation in the codon for alpha 1(I) glycine 988 (1). DNA for sequencing the mutations localized by hybrid analysis may be obtained by either (1) generation of a fibroblast cDNA library and isolation of both alleles by plaque screening, or (2) a more rapid method using first strand cDNA synthesis from poly (A+)-mRNA, followed by PCR amplification of the mutation-containing region of the DNA/RNA hybrid. This strategy for detection and isolation has wide application not only for mutations causing connective tissue disorders, but also for mutations in other large and repetitive genes. We have used this strategy for the detection and sequencing of a point mutation in alpha 2(I) mRNA associated with a case of lethal osteogenesis imperfecta. The G----A point mutation in the codon for alpha 2(I) glycine residue 805 results in the substitution of an aspartic acid at this position and is consistent with the proband's collagen protein data.  相似文献   

19.
20.
Paraffin sections of human skeletal tissues were studied in order to identify cells responsible for production of types I, II, and III collagens by in situ hybridization. Northern hybridization and sequence information were used to select restriction fragments of cDNA clones for the corresponding mRNAs to obtain probes with a minimum of cross-hybridization. The specificity of the probes was proven in hybridizations to sections of developing fingers: osteoblasts and chondrocytes, known to produce only one type of fibrillar collagen each (I and II, respectively) were only recognized by the corresponding cDNA probes. Smooth connective tissues exhibited variable hybridization intensities with types I and III collagen cDNA probes. The technique was used to localize the activity of type II collagen production in the different zones of cartilage during the growth of long bones. Visual inspection and grain counting revealed the highest levels of pro alpha 1(II) collagen mRNAs in chondrocytes of the lower proliferative and upper hypertrophic zones of the growth plate cartilage. This finding was confirmed by Northern blotting of RNAs isolated from epiphyseal (resting) cartilage and from growth zone cartilage. Analysis of the osseochondral junction revealed virtually no overlap between hybridization patterns obtained with probes specific for type I and type II collagen mRNAs. Only a fraction of the chondrocytes in the degenerative zone were recognized by the pro alpha 1(II) collagen cDNA probe, and none by the type I collagen cDNA probe. In the mineralizing zone virtually all cells were recognized by the type I collagen cDNA probe, but only very few scattered cells appeared to contain type II collagen mRNA. These data indicate that in situ hybridization is a valuable tool for identification of connective tissue cells which are actively producing different types of collagens at the various stages of development, differentiation, and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号