首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolution of dimorphic breeding systems may involve changes in ecophysiological traits as well as floral morphology because of greater resource demands on females. Differences between related species suggest that ecophysiological traits should be heritable, and species with higher female frequencies should show greater sexual differentiation. We used modified partial diallel crossing designs to estimate narrow-sense heritabilities and genetic correlations of sex-specific ecophysiological and morphological traits in closely related gynodioecious Schiedea salicaria (13% females) and Schiedea adamantis (39% females). In S. salicaria, hermaphrodites and females differed in photosynthetic rate and specific leaf area (SLA). Narrow-sense heritabilities were significant for stomatal conductance, SLA and inflorescence number in hermaphrodites, and for SLA and inflorescence number in females. Schiedea adamantis had no sexual dimorphism in measured traits; stomatal conductance, stem number and inflorescence number were heritable in females, and stem number was heritable in hermaphrodites. In both species, significant genetic correlations of traits between sexes were rare, indicating that traits can evolve independently in response to sex-differential selection. Significant genetic correlations were detected between certain traits within sexes of both species. Low heritability of some ecophysiological traits may reflect low additive genetic variability or high phenotypic plasticity in these traits.  相似文献   

2.
Sexual dimorphism may be especially pronounced in wind-pollinated species because they lack the constraints of biotically pollinated species that must present their pollen and stigmas in similar positions to ensure pollen transfer. Lacking these constraints, the sexes of wind-pollinated species may diverge in response to the different demands of pollen dispersal and receipt, depending on the magnitude of genetic correlations preventing divergence between sexes. Patterns of sexual dimorphism and genetic variation were investigated for inflorescence traits in Schiedea adamantis (Caryophyllaceae), a species well adapted to wind-pollination, and compared to S. salicaria, a species with fewer adaptations to wind pollination. For S. adamantis, dimorphism was pronounced for inflorescence condensation and its components, including lateral flower number and pedicel length. Within sexes, genetic correlations between traits may constrain the relative shape of the inflorescence. Correlations detected across sexes may retard the evolution of sexual dimorphism in inflorescence structure, including features favoring enhanced dispersal and receipt of pollen. Despite genetic correlations across sexes, common principal components analysis showed that genetic variance-covariance matrices (G matrices) differed significantly between the sexes, in part because of greater genetic variation for flower number in hermaphrodites than in females. G matrices also differed between closely related S. adamantis and S. salicaria, indicating the potential for divergent evolution of inflorescence structure despite general similarities in morphology and pollination biology.  相似文献   

3.
Sex allocation theory addresses how separate sexes can evolve from hermaphroditism but little is known about the genetic potential for shifts in sex allocation in flowering plants. We tested assumptions of this theory using the common currency of biomass and measurements of narrow-sense heritabilities and genetic correlations in Schiedea salicaria, a gynodioecious species under selection for greater differentiation of the sexes. Female (carpel) biomass showed heritable variation in both sexes. Male (stamen) biomass in hermaphrodites also had significant heritability, suggesting the potential for further evolution of dioecy. Significant positive genetic correlations between females and hermaphrodites in carpel mass may slow differentiation between the sexes. Within hermaphrodites, there were no negative genetic correlations between male and female biomass as assumed by models for the evolution of dioecy, suggesting that S. salicaria is capable of further changes in biomass allocation to male and female functions and evolution toward dioecy.  相似文献   

4.
Both changes in sex allocation and pollination mode may promote the separation of sexes in plant populations. Simultaneous evolution of wind pollination and dimorphism has occurred in Schiedea, where species with different female frequencies provide an opportunity to observe the effect of wind pollination on sex allocation and floral morphology. Differences among species in the ratio of anther to ovary volume were not the result of sex allocation trade-offs, but instead resulted from production of vestigial stamens in females; there were no changes in ovary volume in males and hermaphrodites (MH) of dimorphic species. Relative to hermaphroditic species, dimorphic species had more condensed inflorescences, a pattern often associated with wind pollination. Within dimorphic species, MH had longer filament lengths than females, and females had longer stigmas than MHs. These traits are characteristic of wind pollination, but there was no relationship between the degree of sexual dimorphism and female frequency. Ovary volume and ovule number and size had positive phenotypic correlations between females and MH of dimorphic species, making sex specialization more difficult. In dimorphic Schiedea species, selection for wind pollination may have a greater effect on floral traits than trade-offs in allocation between male and female function.  相似文献   

5.
Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1) putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2) gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3) in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s) of S. menziesii.  相似文献   

6.
The evolution of sexual dimorphism depends in part on the additive genetic variance-covariance matrices within females, within males, and across the sexes. We investigated quantitative genetics of floral biomass allocation in females and hermaphrodites of gynodioecious Schiedea adamantis (Caryophyllaceae). The G-matrices within females (G(f)), within hermaphrodites (G(m)), and between sexes (B) were compared to those for the closely related S. salicaria, which exhibits a lower frequency of females and less-pronounced sexual dimorphism. Additive genetic variation was detected in all measured traits in S. adamantis, with narrow-sense heritability from 0.34-1.0. Female allocation and floral size traits covaried more tightly than did those traits with allocation to stamens. Between-sex genetic correlations were all <1, indicating sex-specific expression of genes. Common principal-components analysis detected differences between G(f) and G(m) , suggesting potential for further independent evolution of the sexes. The two species of Schiedea differed in G(m) and especially so in G(f) , with S. adamantis showing greater genetic variation in capsule mass and tighter genetic covariation between female allocation traits and flower size in females. Despite greater sexual dimorphism in S. adamantis, genetic correlations between the two sexes (standardized elements of B) were similar to correlations between sexes in S. salicaria.  相似文献   

7.
The transition from biotic to wind pollination and the consequencesof this transition for the evolution of dioecious breeding systems wereinvestigated in Schiedea and Alsinidendron(Caryophyllaceae: Alsinoideae), genera endemic to the Hawaiian Islands. The potential for wind pollination was studied for five species ofSchiedea using a wind tunnel. Morphological correlates of windpollination for these species were then used to infer the presence orabsence of wind pollination in the remaining Schiedea species. Hermaphroditic Alsinidendron and Schiedea species,which occur in mesic to wet forests, or less commonly in dry habitats,show little or no indication of wind pollination. These species had lowpollen:ovule ratios, large relative pollen size, diffuse inflorescences,substantial nectar production in several cases, and appear to bebiotically pollinated or autogamous. Sexually dimorphic species, whichall occur in dry habitats, are wind pollinated, based on wind tunnelresults or morphological adaptations indicating the potential for windpollination. These adaptations include high pollen:ovule ratios, smallpollen size, moderately to highly condensed inflorescences, and reducednectaries and nectar production. Shifts to wind pollination anddimorphism are strongly correlated in Schiedea, suggesting theclose functional relationship of the twophenomena.  相似文献   

8.
Transitions from wind pollination to insect pollination were pivotal to the radiation of land plants, yet only a handful are known and the trait shifts required are poorly understood. We tested the hypothesis that a transition to insect pollination took place in the ancestrally wind-pollinated sedges (Cyperaceae) and that floral traits modified during this transition have functional significance. We paired putatively insect-pollinated Cyperus obtusiflorus and Cyperus sphaerocephalus with related, co-flowering, co-occurring wind-pollinated species, and compared pairs in terms of pollination mode and functional roles of floral traits. Experimentally excluding insects reduced seed set by 56-89% in putatively insect-pollinated species but not in intermingled wind-pollinated species. The pollen of putatively insect-pollinated species was less motile in a wind tunnel than that of wind-pollinated species. Bees, beetles and flies preferred inflorescences, and color-matched white or yellow models, of putatively insect-pollinated species over inflorescences, or color-matched brown models, of wind-pollinated species. Floral scents of putatively insect-pollinated species were chemically consistent with those of other insect-pollinated plants, and attracted pollinators; wind-pollinated species were unscented. These results show that a transition from wind pollination to insect pollination occurred in sedges and shed new light on the function of traits involved in this important transition.  相似文献   

9.
Transitions between animal and wind pollination have occurred in many lineages and have been linked to various floral modifications, but these have seldom been assessed in a phylogenetic framework. In the dioecious genus Leucadendron (Proteaceae), transitions from insect to wind pollination have occurred at least four times. Using analyses that controlled for relatedness among Leucadendron species, we investigated how these transitions shaped the evolution of floral structural and signaling traits, including the degree of sexual dimorphism in these traits. Pollen grains of wind‐pollinated species were found to be smaller, more numerous, and dispersed more efficiently in wind than were those of insect‐pollinated species. Wind‐pollinated species also exhibited a reduction in spectral contrast between showy subtending leaves and background foliage, reduced volatile emissions, and a greater degree of sexual dimorphism in color and scent. Uniovulate flowers and inflorescence condensation are conserved ancestral features in Leucadendron and likely served as exaptations in shifts to wind pollination. These results offer insights into the key modifications of male and female floral traits involved in transitions between insect and wind pollination.  相似文献   

10.
Physiological traits that control the uptake of carbon dioxide and loss of water are key determinants of plant growth and reproduction. Variation in these traits is often correlated with environmental gradients of water, light, and nutrients, suggesting that natural selection is the primary evolutionary mechanism responsible for physiological diversification. Responses to selection, however, can be constrained by the amount of standing genetic variation for physiological traits and genetic correlations between these traits. To examine the potential for constraint on adaptive evolution, we estimated the quantitative genetic basis of physiological trait variation in one population of each of two closely related species (Lobelia siphilitica and L. cardinalis). Restricted maximum likelihood analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for seven traits associated with carbon and water relations. We detected significant genetic variation for all traits in L. siphilitica, suggesting that carbon-gain and water-use traits could evolve in response to natural selection in this population. In particular, narrow-sense heritabilities for photosynthetic rate (A), stomatal conductance (gs), and water-use efficiency (WUE) in our L. siphilitica population were high relative to previous studies in other species. Although there was significant narrow-sense heritability for A in L. cardinalis, we detected little genetic variation for traits associated with water use (gs and WUE), suggesting that our population of this species may be unable to adapt to drier environments. Despite being tightly linked functionally, the genetic correlation between A and gs was not strong and significant in either population. Therefore, our L. siphilitica population would not be genetically constrained from evolving high A (and thus fixing more carbon for growth and reproduction) while also decreasing gs to limit water loss. However, a significant negative genetic correlation existed between WUE and plant size in L. siphilitica, suggesting that high WUE may be negatively associated with high fecundity. In contrast, our results suggest that any constraints on the evolution of photosynthetic and stomatal traits of L. cardinalis are caused primarily by a lack of genetic variation, rather than by genetic correlations between these functionally related traits.  相似文献   

11.
We studied the potential for response to selection in typical physiological-thermoregulatory traits of mammals such as maximum metabolic rate (MMR), nonshivering thermogenesis (NST) and basal metabolic rate (BMR) on cold-acclimated animals. We used an animal model approach to estimate both narrow-sense heritabilities (h2) and genetic correlations between physiological and growth-related traits. Univariate analyses showed that MMR presented high, significant heritability (h2 = 0.69 +/- 0.35, asymptotic standard error), suggesting the potential for microevolution in this variable. However, NST and BMR presented low, nonsignificant h2, and NST showed large maternal/common environmental/nonadditive effects (c2 = 0.34 +/- 0.17). Heritabilities were large and significant (h2 > 0.5) for all growth-related traits (birth mass, growth rate, weaning mass). The only significant genetic correlations we found between a physiological trait and a growth-related trait was between NST and birth mass (r = -0.74; P < 0.05). Overall, these results suggest that additive genetic variance is present in several bioenergetic traits, and that genetic correlations could be present between those different kinds of traits.  相似文献   

12.
Pollination systems and associated floral traits generally differ between core and marginal populations of a species. However, such differences are rarely examined in plants with a mixed wind‐ and bumblebee‐pollination system, and the role of wind pollination during range expansion in ambophilous plants remains unclear. We compared floral traits and the contributions of bumblebee and wind pollination in refugium and marginal populations of the ambophilous plant Aconitum gymnandrum. We found that most floral traits differed between the two populations, and those traits associated with the shift to wind pollination were pronounced in the marginal population. Bumblebee visitation rates varied significantly, but were generally low in the marginal population. Wind pollination occurred in both populations, and the efficiency was lower than that of bumblebee pollination. Two types of pollen grains, namely round and fusiform pollen, were transported to a stigma by bumblebees and wind, but fusiform pollen contributed to wind pollination to a larger degree, especially in the marginal population. Our results suggest that wind pollination was enhanced by pollen dimorphism in the marginal population of A. gymnandrum, and wind pollination may provide reproductive assurance when bumblebee activity is unpredictable during range expansion, indicating that ambophily is stable in this species and shift in pollination system could be common when plants colonize new habitats.  相似文献   

13.
Despite numerous adaptive scenarios concerning the evolution of plant life-history phenologies few studies have examined the heritable basis for and genetic correlations among these phenologies. Documentation of genetic variation for and covariation among reproductive phenologies is important because it is this variation/covariation that will determine the potential for response to evolutionary forces. To address this problem, I conducted a breeding experiment to determine narrow-sense heritabilities for and genetic correlations among the phenologies of life-history events and plant size in Chamaecristafasciculata, a temperate summer annual plant species. Paternal families showed no evidence of heritable variation for two estimates of plant size, six measures of reproductive phenology or two fitness components. Similarly, paternal estimates of genetic correlations among these traits were low or zero. In contrast, maternal estimates of heritability suggested the influence of maternal parent on one estimate of plant size and four phenological traits. Likewise, maternal effects influenced maternal estimates of genetic correlations. These maternal effects can arise from three sources: endosperm nuclear, cytoplasmic genetic and/or maternal phenotypic. The degree to which the phenology of one life-history trait acts as a constraint on the evolution of other phenological traits depends on the source of the maternal influence in this species.  相似文献   

14.
Metamorphosis is assumed to be beneficial because it can break developmental links between traits in the different phases of a complex life-cycle and thereby allow larval and adult phases to adapt independently. I tested the prediction that correlations between the larval and adult phases are smaller than within stages. I estimated phenotypic and additive genetic variances and correlations for tadpole swimming speed, frog jump distance, body size, and larval period in a single population of the Pacific tree frog, Hyla regilla. These traits are known or reasonably assumed to be important for survival in this and other anuran species from temporary ponds. Only the three size variables were affected by sire identity. Heritabilities for locomotor performance, larval period, and size-independent performance were low (0.00-0.23) and not significant. Body size measurements showed somewhat higher and statistically significant heritabilities (0.24-0.34). Most traits were phenotypically correlated. On average, phenotypic correlations were larger between phases than within phases (0.41 vs. 0.28). Genetic correlations involving body-size traits were positive and large, and average within- and between-phase genetic correlation coefficients were identical (0.81). These results do not support the adaptive decoupling hypothesis, and they indicate that a paucity of additive genetic variation is a likely constraint on the evolution of traits measured for this population.  相似文献   

15.
Distinct floral pollination syndromes have emerged multiple times during the diversification of flowering plants. For example, in western North America, a hummingbird pollination syndrome has evolved more than 100 times, generally from within insect-pollinated lineages. The hummingbird syndrome is characterized by a suite of floral traits that attracts and facilitates pollen movement by hummingbirds, while at the same time discourages bee visitation. These floral traits generally include large nectar volume, red flower colour, elongated and narrow corolla tubes and reproductive organs that are exerted from the corolla. A handful of studies have examined the genetic architecture of hummingbird pollination syndrome evolution. These studies find that mutations of relatively large effect often explain increased nectar volume and transition to red flower colour. In addition, they suggest that adaptive suites of floral traits may often exhibit a high degree of genetic linkage, which could facilitate their fixation during pollination syndrome evolution. Here, we explore these emerging generalities by investigating the genetic basis of floral pollination syndrome divergence between two related Penstemon species with different pollination syndromes—bee-pollinated P. neomexicanus and closely related hummingbird-pollinated P. barbatus. In an F2 mapping population derived from a cross between these two species, we characterized the effect size of genetic loci underlying floral trait divergence associated with the transition to bird pollination, as well as correlation structure of floral trait variation. We find the effect sizes of quantitative trait loci for adaptive floral traits are in line with patterns observed in previous studies, and find strong evidence that suites of floral traits are genetically linked. This linkage may be due to genetic proximity or pleiotropic effects of single causative loci. Interestingly, our data suggest that the evolution of floral traits critical for hummingbird pollination was not constrained by negative pleiotropy at loci that show co-localization for multiple traits.  相似文献   

16.
The evolution of plastic traits requires phenotypic trade-offs and heritable traits, yet the latter requirement has received little attention, especially for predator-induced traits. Using a half-sib design, I examined the narrow-sense heritability of predator-induced behaviour, morphology, and life history in larval wood frogs (Rana sylvatica). Many of the traits had significant additive genetic variation in predator (caged Anax longipes) and no-predator environments. Whereas most traits had moderate to high heritability across environments, tail depth exhibited high heritability with predators but low heritability without predators. In addition, several traits had significant heritability for plasticity, suggesting a potential for selection to act on plasticity per se. Genetic correlations confirmed known phenotypic relationships across environments and identified novel relationships within each environment. This appears to be the first investigation of narrow-sense heritabilities for predator-induced traits and confirms that inducible traits previously shown to be under selection also have a genetic basis and should be capable of exhibiting evolutionary responses.  相似文献   

17.
Abstract Levels of selfing and resource allocation patterns were investigated in Schiedea salicaria (Caryophyllaceae), a gynodioecious species with high levels of inbreeding depression and nuclear control of male sterility. Selfing levels were higher in hermaphrodites than females, especially when adjusted for early acting inbreeding depression. The sexes of S. salicaria were similar in most allocation patterns including number of flowers and capsules per inflorescence, seeds per flower, and seed mass. Seeds produced by females had higher levels of germination than seeds of hermaphrodites, a likely result of high selfing levels and the expression of inbreeding depression in the progeny of hermaphrodites. Invasion of females in populations of S. salicaria is probably related to the expression of inbreeding depression at germination and in later life history stages. Comparisons with related species of Schiedea that also have nuclear control of male sterility suggest that reallocation of resources in hermaphrodites to male function occurs as females increase in frequency, but that resource reallocation is not important for the success of females when they first invade populations.  相似文献   

18.
Variation in inflorescence development patterns is a central factor in the evolutionary ecology of plants. The genetic architectures of 13 traits associated with inflorescence developmental timing, architecture, rosette morphology, and fitness were investigated in Arabidopsis thaliana, a model plant system. There is substantial naturally occurring genetic variation for inflorescence development traits, with broad sense heritabilities computed from 21 Arabidopsis ecotypes ranging from 0.134 to 0.772. Genetic correlations are significant for most (64/78) pairs of traits, suggesting either pleiotropy or tight linkage among loci. Quantitative trait locus (QTL) mapping indicates 47 and 63 QTL for inflorescence developmental traits in Ler x Col and Cvi x Ler recombinant inbred mapping populations, respectively. Several QTL associated with different developmental traits map to the same Arabidopsis chromosomal regions, in agreement with the strong genetic correlations observed. Epistasis among QTL was observed only in the Cvi x Ler population, and only between regions on chromosomes 1 and 5. Examination of the completed Arabidopsis genome sequence in three QTL regions revealed between 375 and 783 genes per region. Previously identified flowering time, inflorescence architecture, floral meristem identity, and hormone signaling genes represent some of the many candidate genes in these regions.  相似文献   

19.
Evolutionary transitions from animal to wind pollination have occurred repeatedly during the history of the angiosperms, but the selective mechanisms remain elusive. Here, we propose that knowledge of pollen release biomechanics is critical for understanding the ecological and evolutionary processes underpinning this shift in pollination mode. Pollen release is the critical first stage of wind pollination (anemophily) and stamen properties are therefore likely to be under strong selection early in the transition. We describe current understanding of pollen release biomechanics to provide insights on the phenotypic and ecological drivers of wind pollination. Pollen release occurs when detachment forces dominate resistive forces retaining pollen within anthers. Detachment forces can be active or passive depending on whether they require energy input from the environment. Passive release is more widespread in anemophilous species and involves processes driven by steady or unsteady aerodynamic forces or turbulence-induced vibrations that shake pollen from anthers. We review empirical and theoretical studies suggesting that stamen vibration is likely to be a key mechanism of pollen release. The vibration response is governed by morphological and biomechanical properties of stamens, which may undergo divergent selection in the presence or absence of pollinators. Resistive forces have rarely been investigated for pollen within anthers, but are probably sensitive to environmental conditions and depend on flower age, varying systematically between animal- and wind-pollinated species. Animal and wind pollination are traditionally viewed as dichotomous alternatives because they are usually associated with strikingly different pollination syndromes. But this perspective has diverted attention from subtler, continuously varying traits which mediate the fluid dynamic process of pollen release. Reinterpreting the flower as a biomechanical entity that responds to fluctuating environmental forces may provide a promising way forward. We conclude by identifying several profitable areas for future research to obtain deeper insight into the evolution of wind pollination.  相似文献   

20.
The radiation of angiosperms is associated with shifts among pollination modes that are thought to have driven the diversification of floral forms. However, the exact sequence of evolutionary events that led to such great diversity in floral traits is unknown for most plant groups. Here, we characterize the patterns of evolution of individual floral traits and overall floral morphologies in the tribe Bignonieae (Bignoniaceae). We identified 12 discrete traits that are associated with seven floral types previously described for the group and used a penalized likelihood tree of the tribe to reconstruct the ancestral states of those traits at all nodes of the phylogeny of Bignonieae. In addition, evolutionary correlations among traits were conducted using a maximum likelihood approach to test whether the evolution of individual floral traits followed the correlated patterns of evolution expected under the "pollination syndrome" concept. The ancestral Bignonieae flower presented an Anemopaegma-type morphology, which was followed by several parallel shifts in floral morphologies. Those shifts occurred through intermediate stages resulting in mixed floral morphologies as well as directly from the Anemopaegma-type morphology to other floral types. Positive and negative evolutionary correlations among traits fit patterns expected under the pollination syndrome perspective, suggesting that interactions between Bignonieae flowers and pollinators likely played important roles in the diversification of the group as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号