首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutrophil NADPH oxidase.   总被引:29,自引:0,他引:29  
The NADPH oxidase of phagocytes catalyzes the conversion of oxygen to O2(-). This multicomponent enzyme complex contains five essential protein components, two in the membrane and three in the cytosol. Unassembled and inactive in resting phagocytes, the oxidase becomes active after translocation of cytosolic components to the membrane to assemble a functional oxidase. Multiple factors regulate its assembly and activity, thus serving to maintain this highly reactive system under spatial and temporal control until recruited for antimicrobial or proinflammatory events. The recent identification of homologs of one of the membrane components in nonphagocytic cells will expand understanding of the biological contexts in which this system may function.  相似文献   

2.
We describe in this paper a monoclonal antibody to pig NADPH oxidase which inhibits enzymatic activity. This antibody, designated 1H8.2, was selected from a group of monoclonal antibodies produced against active preparations of purified NADPH oxidase and which showed selectivity of binding. 1H8.2 is an IgM restricted in binding to pig NADPH oxidase and showing higher binding to NADPH oxidase purified from phorbol myristate acetate-stimulated than from resting neutrophils. The antibody inhibits by about 90% the oxidase activity at 20-50 micrograms/ml. Inhibition is due to a decrease of the Vmax of the oxidase, and the Km is not affected. Incubation of the NADPH oxidase with 1H8.2 in the presence of concentrations of NADPH up to 25-fold the Km does not prevent the inhibition. Together with the evidence that the antibody does not inhibit the neutrophil superoxide dismutase-insensitive NADPH cytochrome c reductase and the liver NADPH-cytochrome c reductase this observation indicates that the 1H8.2 does not bind to an epitope belonging to the NADPH-binding site. Experiments of immunoprecipitation of iodinated membrane proteins and of immunoaffinity purification showed that 1H8.2 recognizes a heterodimer of apparent molecular mass of 16/18 and 14 kDa. These polypeptides can be involved in the NADPH oxidase activity or represent still unrecognized molecules able to modulate its function.  相似文献   

3.
RhoG is a Rho family small GTPase implicated in cytoskeletal regulation, acting either upstream of or in parallel to Rac1. The precise function(s) of RhoG in vivo has not yet been defined. We have identified a novel role for RhoG in signaling the neutrophil respiratory burst stimulated by G protein-coupled receptor agonists. Bone marrow-derived neutrophils from RhoG knockout (RhoG(-/-)) mice exhibited a marked impairment of oxidant generation in response to C5a or fMLP, but normal responses to PMA or opsonized zymosan and normal bacterial killing. Activation of Rac1 and Rac2 by fMLP was diminished in RhoG(-/-) neutrophils only at very early (5 s) time points (by 25 and 32%, respectively), whereas chemotaxis in response to soluble agonists was unaffected by lack of RhoG. Additionally, fMLP-stimulated phosphorylation of protein kinase B and p38MAPK, activation of phospholipase D, and calcium fluxes were equivalent in wild-type and RhoG(-/-) neutrophils. Our results define RhoG as a critical component of G protein-coupled receptor-stimulated signaling cascades in murine neutrophils, acting either via a subset of total cellular Rac relevant to oxidase activation and/or by a novel and as yet undefined interaction with the neutrophil NADPH oxidase.  相似文献   

4.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

5.
Electron transport by the human neutrophil NADPH oxidase is an important microbicidal weapon for phagocytes. The electron current (Ie) generated by the neutrophil NADPH oxidase is poorly characterised due to the lack of appropriate electrophysiological data. In this study, I fully characterise the neutrophil generated Ie when the NADPH oxidase is activated by NADPH and GTPγS. The neutrophil Ie was markedly voltage-dependent in the entire voltage range in comparison to those electron currents measured after chloride was removed from the external bath solution. The difference in Ie measured in chloride free conditions was not due to a change in the activation kinetics of voltage-gated proton channels. The Ie depolarises the neutrophil plasma membrane at a rate of 2.3 V s−1 and this depolarisation was opposed when voltage-gated proton channels are activated. 3 mM ZnCl2 depolarised the membrane potential to +97.8 ± 2.5 mV (n = 4), and this depolarisation was abolished after NADPH oxidase inhibition.  相似文献   

6.
In the O2- generating flavocytochrome b, the membrane-bound component of the neutrophil NADPH oxidase, electrons are transported from NADPH to O2 in the following sequence: NADPH --> FAD --> heme b -->O2. Although p-iodonitrotetrazolium (INT) has frequently been used as a probe of the diaphorase activity of the neutrophil flavocytochrome b, the propensity of its radical to interact reversibly with O2 led us to question its specificity. This study was undertaken to reexamine the interaction of INT with the redox components of the neutrophil flavocytochrome b. Two series of inhibitors were used, namely the flavin analog 5-deaza FAD and the heme inhibitors bipyridyl and benzylimidazole. The following results indicate that INT reacts preferentially with the hemes rather than with the FAD redox center of flavocytochrome b and is not therefore a specific probe of the diaphorase activity of flavocytochrome b. First, in anaerobiosis, reduced heme b in activated membranes was reoxidized by INT as efficiently as by O2 even in the presence of concentrations of 5-deaza FAD which fully inhibited the NADPH oxidase activity. Second, the titration curve of dithionite-reduced heme b in neutrophil membranes obtained by oxidation with increasing amounts of INT was strictly superimposable on that of dithionite-reduced hemin. Third, INT competitively inhibited the O2 uptake by the activated NADPH oxidase in a cell-free system. Finally, the heme inhibitor bipyridyl competitively inhibited the reduction of INT in anaerobiosis, and the oxygen uptake in aerobiosis.  相似文献   

7.
NADPH binding component of neutrophil superoxide-generating oxidase   总被引:4,自引:0,他引:4  
The 2',3'-dialdehyde derivative of NADPH was used as an affinity labeling reagent of a solubilized NADPH-dependent superoxide-generating oxidase preparation of pig neutrophils. The analogue served as both an electron donor and a competitive inhibitor of the NADPH oxidase against NADPH. The apparent Michaelis constant (Km) for the derivative (31 microM) was essentially the same as that for NADPH (33 microM). The activity of the superoxide formation in the presence of 2',3'-dialdehyde NADPH was about a half of that in the presence of NADPH. Incubation of the enzyme with the derivative inactivated the superoxide-generating activity and the inactivation was prevented by the addition of NADPH. We performed the labeling of the oxidase preparation with 2',3'-dialdehyde NADPH and sodium cyanoboro[3H]hydride, based on the above results. A protein of 66,000 daltons was selectively labeled among more than 20 bands in sodium dodecyl sulfate-polyacrylamide gel electrophoresis which were visualized with Coomassie Brilliant Blue. The protein was not labeled when the oxidase preparation was pretreated with p-chloromercuribenzoate or it was labeled in the presence of excess NADPH. The protein is suggested to be the NADPH binding component of the neutrophil superoxide-generating oxidase system.  相似文献   

8.
Stimulation of the respiratory burst of human neutrophils by fMet-Leu-Phe (in the absence of cytochalasin B) is largely unaffected when the activities of protein kinase C and phospholipase D are inhibited. This has been confirmed using three separate assays to measure the respiratory burst. However, whilst these enzymes are not required for the initiation or maximal rate of oxidant generation, they are required to sustain oxidase activity. In contrast, in the presence of cytochalasin B, fMet-Leu-Phe stimulated oxidase activity is much more dependent on phospholipase D activity. It is proposed that (in the absence of cytochalasin B) activation of the NADPH oxidase utilises cytochrome b molecules that are already present on the plasma membrane and activation occurs independently of phospholipase D and protein kinase C. Once these complexes are inactivated, then new cytochrome b molecules must be recruited from sub-cellular stores. This translocation and/or activation of these molecules is phospholipase D dependent. Some support for this model comes from the finding that the translocation of CD11b (which co-localises with cytochrome b) onto the cell surface is phospholipase D dependent.Abbreviations GM-CSF granulocyte-macrophage colony-stimulating factor - fMet-Leu-Phe N-formylmethionyl-leucyl-phenylalanine luminol 5-amino-2,3-dihydro-1,4-phthalazinedione, O2,-superoxide radical  相似文献   

9.
A menadione-stimulated, superoxide-generating enzyme was purified 127-fold from resting bovine polymorphonuclear leukocyte (neutrophil) membranes with a yield of 34%. The enzyme was extracted with Triton X-100 and purified by chromatography on DEAE-Sepharose CL-6B, NAD-agarose, and Sephacryl S-200. The purified enzyme contained FAD and had an apparent molecular mass of 93 kDa by sodium dodecyl sulfate gel electrophoresis. In a nondenaturing gel electrophoresis system, the enzyme was multimeric (Mr greater than 400,000). The oxidase showed 3-4-fold higher activity (Vm) with NADH compared with NADPH, but the Km for both pyridine nucleotides was similar (39 and 47 microM, respectively). The enzyme transferred electrons to cytochrome c, dichlorophenolindophenol, and nitro blue tetrazolium. Cytochrome c reduction was stimulated 4-fold by menadione and was inhibited 70% by superoxide dismutase. Cytochrome c reduction was not inhibited by several mitochondrial respiratory chain inhibitors (azide, cyanide, and rotenone) but was sensitive to thiol-reactive agents (p-chloromercuribenzoate and monoiodo acetate). The catalytic properties of this enzyme distinguish it from the NADPH-dependent superoxide-generating respiratory burst oxidase (NADPH-oxidase) of human neutrophils. Nevertheless, antibodies to this enzyme inhibited not only the purified menadione-stimulated oxidase, but also the respiratory burst oxidase in membranes isolated from activated human neutrophils, indicating similar antigenic determinants are shared by these enzymes. Western blots of human neutrophil membranes visualized a plasma membrane protein of molecular mass 67 kDa, corresponding in size to a protein previously reported in preparations of the human respiratory burst oxidase.  相似文献   

10.
This study was designed to measure the effects of iron supplementation on respiratory burst in iron-deficient anemia. The performance of neutrophils was evaluated by measuring the activity of NADPH oxidase in 18 patients with iron-deficient anemia before and after body iron stores are saturated. The activity of NADPH oxidase was significantly lower in pretreatment patients relative to controls (p<0.05). The activity increased after iron supplementation to levels that had no significant differences relative to controls.  相似文献   

11.
Rac1 and Rac2 are closely related, low molecular weight GTP-binding proteins that have both been implicated in regulation of phagocyte NADPH oxidase. This enzyme system is composed of multiple membrane-bound and cytosolic subunits and when activated catalyzes the one-electron reduction of oxygen to superoxide. Superoxide and its highly reactive derivatives are essential for killing microorganisms. Rac proteins undergo posttranslational processing, primarily the addition of an isoprenyl group to a carboxyl-terminal cysteine residue. We directly compared recombinant Rac1 and Rac2 in a human neutrophil cell-free NADPH oxidase system in which cytosol was replaced by purified recombinant cytosolic components (p47-phox and p67-phox). Processed Rac1 and Rac2 were both highly active in this system and supported comparable rates of superoxide production. Under different cell-free conditions, however, in which suboptimal amounts of cytosol were present in the assay mixture, processed Rac2 worked much better than Rac1 at all but the lowest concentrations. This suggests that a factor in the cytosol may suppress the activity of Rac1 but not of Rac2. Unprocessed Rac proteins were only weakly able to support superoxide generation in either system, but preloading of Rac1 or Rac2 with guanosine 5'-O-(3-thio-triphosphate) (GTP gamma S) restored activity. These results indicate that processing is required for nucleotide exchange but not for interaction with oxidase components.  相似文献   

12.
Abstract Stimulation of human neutrophils with the chemotactic peptide fMet-Leu-Phe results in activation of a rapid, transient burst of oxidant secretion, which reaches a maximal rate by about 1 min after stimulation. This phase of oxidant secretion is then followed by intracellular oxidant production, which is detected by luminol chemiluminescence but not by assays such as cytochrome c reduction or scopoletin oxidation. The rapid phase of oxidant secretion requires increases in intracellular free Ca2+ and phospholipase A2 activity, but not the activities of phospholipase D or D or protein kinase C. In contrast, intracellular oxidant production requires the activities of phospholipase D and protein kinase C. A model is thus proposed suggesting the sequential activation of different phospholipases which activate oxidase molecules on the plasma membrane or else from the membranes of specific granules.  相似文献   

13.
Human neutrophils and other phagocytes generate superoxide anion (O2-) as a means of destroying ingested microorganisms. O2- is produced by an NADPH-consuming oxidase composed of membrane and cytosolic components. Activation of the NADPH oxidase is absolutely dependent upon GTP, indicating the requirement for a GTP-binding protein in this process. We have utilized a five-step chromatographic procedure to isolate a GTP-binding protein from human neutrophil cytosol which can stimulate NADPH oxidase activity in a cell-free assay. Oxidase enhancing activity was shown to coisolate with this GTP-binding component, which was purified to apparent homogeneity. The GTP-binding protein was identified as Rac 2 by immunological reactivity and amino acid sequencing. Thus, Rac 2 appears to be a third cytosolic component required for human neutrophil NADPH oxidase activation. Recombinant Rac 2 was shown to bind guanine nucleotides in a Mg(2+)-dependent fashion. GDP dissociation rates were determined and shown to be regulated by the free Mg2+ concentration. Rac 2 was found to possess the highest rate of intrinsic GTP hydrolysis of any of the characterized members of the Ras superfamily. The biochemical properties of Rac 2 indicate it is likely to be subject to regulatory cofactors in vivo.  相似文献   

14.
Fluorescence photobleaching recovery was employed to investigate the relationship between the activation of neutrophil NADPH oxidase and lateral mobility of membrane proteins. Treatment of neutrophils with the crosslinking reagent disuccinimidyl suberate (DSS) blocked activation of the respiratory burst without affecting the lateral motion of concanavalin A receptors. Neutrophils treated with DSS after prestimulation with concanavalin A generated superoxide in response to another stimulator, phorbol myristate acetate, in spite of the lateral immobilization of concanavalin A receptors. The apparent lack of correlation between the activation of NADPH oxidase and the lateral motion of membrane proteins is discussed.  相似文献   

15.
The kinetics of sodium dodecyl sulfate-induced activation of respiratory burst oxidase (NADPH oxidase) in a fully soluble cell-free system from resting (control) or phorbol myristate acetate (PMA)-stimulated human neutrophils were investigated. In a cell-free system containing solubilized membranes and cytosol fractions (cytosol) derived from control neutrophils (control cell-free system), the values of Km and Vmax for NADPH of the NADPH oxidase from control neutrophils continuously increased with increasing concentrations of cytosol, but with increasing concentrations of solubilized membranes from the control neutrophils, Km values continuously decreased, suggesting cytosolic activation factor-dependent continuous changes in the affinity of NADPH oxidase to NADPH. In a cell-free system containing solubilized membranes and cytosol prepared from PMA-stimulated neutrophils, NADPH oxidase was not activated after the addition of NADPH. However, cytosol from control neutrophils activated the NADPH oxidase of PMA-stimulated neutrophils in a cell-free system. Cytosol from PMA-stimulated neutrophils did not activate the control neutrophil oxidase, although it contained no inhibitors of NADPH oxidase activation. The results suggest that, in PMA-stimulated neutrophils, cytosolic activation factors may be consumed or exhausted with an increasing period of time after the stimulation of neutrophils, and that the affinity of PMA-stimulated neutrophil NADPH oxidase to NADPH may almost be the same as that of control neutrophil oxidase. It was concluded that the affinity of NADPH oxidase to NADPH was closely associated with interaction between solubilized membranes and cytosolic activation factors, as indicated by the concentration ratio.  相似文献   

16.
We studied the effect of bilirubin on the NADPH-dependent superoxide production induced by sodium dodecyl sulfate in a cell-free system consisting of the membrane and cytosolic fractions of pig neutrophils. Preincubation of the cytosolic fraction with bilirubin before the addition of sodium dodecyl sulfate resulted in the time- and dose-dependent inhibition of the superoxide production while the preincubation of the membrane fraction with the tetrapyrrole did not result in the inhibition. When the pigment was added after the initiation of the reaction, the ongoing production was not affected by the addition. Other tetrapyrroles, such as hemin, protoporphyrin and biliverdin, also inhibited the production. The results indicate that bilirubin inhibits the activation process of the superoxide producing NADPH oxidase by decreasing the potency of the cytosolic fraction and its inhibitory effect seems to be due to the hydrophobic nature of the tetrapyrrole.  相似文献   

17.
Superoxide production by neutrophil NADPH oxidase activated in a cell-free system consisting of plasma membranes, cytosol and arachidonate is enhanced by nonhydrolyzable analogs of GTP and reduced by GDP. To characterize the interaction of guanine nucleotides with the system, dialdehyde analogs of GTP and GDP (oGTP and oGDP) were employed. oGDP or oGTP caused an irreversible and dose dependent inactivation of NADPH oxidase-supporting cytosolic activity. Cytosol was fractionated on S and Q Sepharose ion exchange columns into three fractions, combinations of which synergistically supported activation of NADPH oxidase. Two fractions shown by immunoblotting to contain the oxidase-linked p47 and p67 proteins were inactivated by oGDP. Labeling with [alpha-32P]-oGTP lead to incorporation of the label into several proteins.  相似文献   

18.
The induction of the respiratory burst in human neutrophils by combinations of fMLP and either PAF or LTB4 was studied. Pretreatment with PAF (0.0001 to 10 uM), which by itself did not elicit the burst, greatly enhanced the rate and extent of fMLP-induced superoxide production. A synergism of a different kind was observed with the reversed stimulus sequence: Pretreatment with fMLP made the neutrophils capable to respond to PAF with superoxide production. A moderate enhancement of the fMLP response was also obtained following pretreatment with LTB4. The response of the cells to LTB4, however, was not influenced by fMLP, and no synergism was observed between the two neutrophil products PAF and LTB4. The results of this study demonstrate a marked synergism between fMLP and PAF and suggest that PAF may function as an amplifier of the respiratory burst response of stimulated neutrophils.  相似文献   

19.
20.
The effects of gentamycin on the NADPH oxidase (EC 1.6.99.6) from human neutrophils in both whole-cell and fully soluble (cell-free) systems were investigated. Gentamycin was found to inhibit, concentration-dependently, the superoxide generation of neutrophils exposed to phorbol myristate acetate in a whole-cell system and the activation of superoxide-generating NADPH oxidase by sodium dodecyl sulfate in a cell-free system. The concentrations of the drug required for 50% inhibition of the oxidase (IC50) were 150 μM in the whole-cell system and 10 μM in the cell-free system. In addition, in the cell-free system, the drug did not change the Km value for NADPH of the oxidase. However, gentamycin did not the superoxide generation of NADPH oxidase after its activation in the cell-free system, suggesting that the drug do not have superoxide-scavenger action. These results suggest that gentamycin, an aminoglycoside antibiotic, may exhibit an anti-inflammatory action due to inhibition of neutrophil NADPH oxidase activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号