首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short INterspersed Elements (SINEs) make very useful phylogenetic markers because the integration of a particular element at a location in the genome is irreversible and of known polarity. These attributes make analysis of SINEs as phylogenetic characters an essentially homoplasy-free affair. Alu elements are primate-specific SINEs that make up a large portion of the human genome and are also widespread in other primates. Using a combination wet-bench and computational approach we recovered 190 Alu insertions, 183 of which are specific to the genomes of nine New World primates. We used these loci to investigate branching order and have produced a cladogram that supports a sister relationship between Atelidae (spider, woolly, and howler monkeys) and Cebidae (marmosets, tamarins, and owl monkeys) and then the joining of this two family clade to Pitheciidae (titi and saki monkeys). The data support these relationships with a homoplasy index of 0.00. In this study, we report one of the largest applications of SINE elements to phylogenetic analysis to date, and the results provide a robust molecular phylogeny for platyrrhine primates.  相似文献   

2.
A polymorphic Alu element belonging to the young Ya5 subfamily of Alu repeats located in the progesterone receptor gene has been characterized. Using a polymerase chain reaction (PCR)-based assay, the genetic diversity associated with the PROGINS Alu repeat was determined in a diverse array of human populations. The level of insertion polymorphism associated with PROGINS suggests that it will be a useful marker for the study of human evolution. In addition, we determined the distribution of the PROGINS Alu insertion in two groups of women from greater New Orleans, LA with breast cancer. The PROGINS Alu insertion was not associated with breast cancer in the populations tested.  相似文献   

3.
Several features make Alu insertions a powerful tool used in population genetic studies: the polymorphic nature of many Alu insertions, the stability of an Alu insertion event and, furthermore, the ancestral state of an Alu insertion is known to be the absence of the Alu element at a particular locus and the presence of an Alu insertion at the site that forward mutational change. This study analyses seven Alu insertion polymorphisms in a sample of 297 individuals from the autochthonous population of Tunisia (Thala, Smar, Zarzis, and Bou Salem) and Libya with the aim of studying their genetic structure with respect to the populations of North Africa, Western, Eastern and Central Europe. The comparative analyses carried out using the MDS and AMOVA methods reveal the existence of spatial heterogeneity, and identify four population groups. Study populations (Libya, Smar, Zarzis, and Bou Salem) are closest to North African populations whereas Thala is isolated and is closest to Western European populations. In conclusion, Results of the present study support the important role that migratory movements have played in the North African gene pool, at least since the Neolithic period.  相似文献   

4.
The analysis of the genetic variability associated to Alu sequences was hampered by the absence of genome-wide methodologies able to efficiently detect new polymorphisms/mutations among these repetitive elements. Here we describe two Alu insertion profiling (AIP) methods based on the hybridization of Alu-flanking genomic fragments on tiling microarrays. Protocols are designed to preferentially detect active Alu subfamilies. We tested AIP methods by analyzing chromosomes 1 and 6 in two genomic samples. In genomic regions covered by array-features, with a sensitivity of 2% (AIP1) -4% (AIP2) and 5% (AIP1) -8% (AIP2) for the old J and S Alu lineages respectively, we obtained a sensitivity of 67% (AIP1) -90% (AIP2) for the young Ya subfamily. Among the loci showing sample-to-sample differences, 5 (AIP1) -8 (AIP2) were associated to known Alu polymorphisms. Moreover, we were able to confirm by PCR and DNA sequencing 4 new intragenic Alu elements, polymorphic in 10 additional individuals.  相似文献   

5.
6.
Alu elements are a family of interspersed repeats in the genome propagating by retroposition into new chromosomal locations. Alu insertion in Ace gene is known to be polymorphic (presence/absence of Alu element) in worldwide populations and as such serves as marker for population structure analyses. In this study we examined the distribution of genotypes and allele frequencies of this polymorphism in general Croatian population and its two isolates (the island of Hvar and the coastal region of the Middle Dalmatia) and related them to the level of endogamy as an indicator of inbreeding in these populations. Results showed that these three population groups are different with respect to Ace Alu polymorphism. The endogamy was highest on the island of Hvar. With the increase of endogamy a decrease in heterozigosity was observed. The same trend was observed for the frequency of insertion allele. Its frequencies in the village subpopulations of two studied isolates are subject to genetic drift due to small population sizes and high levels of endogamy. This in turn causes genetic differentiation among villages that is observed to be higher on the island of Hvar than in the coastal region. In the worldwide perspective, the Ace Alu insertion allele frequency of 50.6% in the general Croatian population falls within the range of other European populations.  相似文献   

7.
A novel polymerase chain reaction (PCR) primer pair was used to analyze the frequency of insertion of the first described, nonhuman, baboon-specific Alu repetitive element in populations from the Papio hamadryas anubis and the Papio hamadryas hamadryas subspecies, and from a number of anubis-hamadryas hybrids. The Alu insertion is found in intron 7 of the baboon lipoprotein lipase (LPL) gene. Each of the populations had different frequencies for the insertion, and the hybrids examined had a frequency intermediate to that of the parental populations. All hybrids and all P. h. anubis groups except the group of anubis sampled in 1973 exhibited higher-than-expected heterozygosity, while P. h. hamadryas and 1973 P. h. anubis showed lower-than-expected heterozygosity, supporting behavioral and other genetic observations of greater anubis outbreeding relative to hamadryas. This may include asymmetric introgression of the Alu insertion from hamadryas to the anubis population due to hybridization. Am J Phys Anthropol 109:1–8, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

8.
We analyze genetic variation at fused1, a locus that is close to the centromere of the X chromosome-autosome (X/4) fusion in Drosophila americana. In contrast to other X-linked and autosomal genes, for which a lack of population subdivision in D. americana has been observed at the DNA level, we find strong haplotype structure associated with the alternative chromosomal arrangements. There are several derived fixed differences at fused1 (including one amino acid replacement) between two haplotype classes of this locus. From these results, we obtain an estimate of an age of approximately 0.61 million years for the origin of the two haplotypes of the fused1 gene. Haplotypes associated with the X/4 fusion have less DNA sequence variation at fused1 than haplotypes associated with the ancestral chromosome arrangement. The X/4 haplotypes also exhibit clinal variation for the allele frequencies of the three most common amino acid replacement polymorphisms, but not for adjacent silent polymorphisms. These patterns of variation are best explained as a result of selection acting on amino acid substitutions, with geographic variation in selection pressures.  相似文献   

9.
Alu elements are a class of repetitive DNA sequences found throughout the human genome that are thought to be duplicated via an RNA intermediate in a process termed retroposition. Recently inserted Alu elements are closely related, suggesting that they are derived from a single source gene or closely related source genes. Analysis of the type III collagen gene (COL3A1) revealed a polymorphic Alu insertion in intron 8 of the gene. The Alu insertion in the COL3A1 gene had a high degree of nucleotide identity to the Sb family of Alu elements, a family of older Alu elements. The Alu sequence was less similar to the consensus sequence for the PV or Sb2 subfamilies, subfamilies of recently inserted Alu elements. These data support the observations that at least three source genes are active in the human genome, one of which is distinct from the PV and Sb2 subfamilies and predates either of these two subfamilies. Appearance of the Alu insertion in different ethnic populations suggests that the insertion may have occurred in the last 100,000 years. This Alu insert should be a useful marker for population studies and for marking COL3A1 alleles.  相似文献   

10.
Discrimination of Alu insertions is a useful tool for geographic ancestry analysis, and is usually performed by Alu element amplification and agarose gel electrophoresis. Here, we have developed a new fluorescence-based method for multiple Alu genotyping in forensic identification. Allele frequencies were determined in 70 Japanese individuals, and we selected 30 polymorphic Alu insertions. Three primers were designed for each Alu locus to discriminate alleles using the 3-6 bp differences in amplicon sizes. Furthermore, we classified the amplification primers for the 30 loci into three different sets, and PCR using each set of primers provided 10 loci fragments ranging from 50 to 137 bp. Based on population data, the probability of incorrectly assigning a match was 3.7×10(-13). Three independent amplifications and subsequent capillary electrophoresis enabled the sensitive genotyping of small amounts of DNA, indicating that this method is suitable for identifying individuals of Japanese ethnicity.  相似文献   

11.
Hereditary non-polyposis colorectal cancer (HNPCC) syndrome is an autosomal, dominantly inherited disease accounting for about 1%–5% of all colorectal cancer cases. HNPCC predisposition is caused by germline mutations in at least five genes coding for DNA mismatch repair (MMR) proteins. More than 400 MMR gene mutations have been identified in HNPCC patients. About 90% of mutations affect the MLH1 and MSH2 genes. The mutational spectrum mainly includes point mutations and small deletions or insertions. Here, we report a large 184 base-pair Alu insertion mutation in exon 6 of the MSH2 gene in a German HNPCC family. The inserted sequence contains repetitive Alu sequence elements that present the highest homology with the old Alu J subfamily. The Alu J insertion was most likely derived from Alu-mediated recombination, since Alu J elements have been found close to the insertion site in adjacent introns, and since elements pivotal for Alu retrotransposition are missing. Our results suggest that the recombination event occurred at least one generation ago. This is the first report of an Alu insertion in the coding sequence of a MMR gene as the cause of HNPCC. Our data thus further extend the spectrum of MMR gene mutations causative for HNPCC.M. Kloor and C. Sutter contributed equally to this work  相似文献   

12.
We examined genetic variation in nine populations of Dagestan using 11 autosomal Alu insertion polymorphisms to investigate the genetic structure of indigenous groups and to assess their genetic relationship with world populations. Genetic differentiation among mountain inhabitants (Gsr = 2%) is comparable to that for European populations. Traces of genetic drift are detectable only for endogamous and small Ando-Dido-speaking ethnic groups, and they coincide with the most linguistically diverse region of Dagestan. Multidimensional scaling analyses among West Eurasian populations revealed that mountain inhabitants of Dagestan are closely related to Anatolian and Cyprus Turks. Thus our frequency data are consistent with the available Y-chromosome data, according to which the Middle East and the Caucasus share a considerable portion of the gene pool. Overall, our results corroborate the initially suggested genetic contribution of Middle Eastern populations to Caucasus populations.  相似文献   

13.
Alu insertion polymorphism: a new type of marker for human population studies.   总被引:10,自引:0,他引:10  
A PCR-based method was used to screen 462 individuals from Japan, Papua New Guinea, Indonesia, and Australia for an Alu family insertion polymorphism. The frequency of this Alu insertion shows significant heterogeneity among island subgroups of the Indonesian sample and between the Japanese-Indonesian populations and the Australian-New Guinean populations. The simple, rapid PCR-based screening technique and the significant frequency differences among populations demonstrate that Alu insertion polymorphisms are potentially valuable markers for studies of the evolutionary history and migration patterns of modern humans.  相似文献   

14.
15.
The COL3A1 Alu insertion is a member of the AluY subfamily. It has been found to be absent in non-human primates and polymorphic in worldwide human populations. The integration of the element into the human genome seems to have preceded the initial migration(s) of anatomically modern humans out of the African continent. Although the insertion has been detected in populations from all the continents, its highest frequency values are located within sub-Saharan Africa. The sequence alignment of the COL3A1 insertion from several African individuals revealed a bi-allelic single nucleotide polymorphism (SNP) at the downstream terminus of the element's poly-A tract. Once discovered, a selective PCR procedure was designed to determine the frequency of both alleles in 19 worldwide populations. The A-allele in this binary SNP experiences a clinal increase in the eastward direction from Africa to Southeast Asia and Mongolia, reaching fixation in the two latter regions. The T variant, on the other hand, exhibits a westward clinal increase outside of Africa, with its lowest frequency in Asia and achieving fixation in northern Europe. The presence of this internal SNP extends the usefulness provided by the polymorphic Alu insertion (PAI). It is possible that superimposing polymorphisms like this one found in the COL3A1 locus may accentuate signals from genetic drift events allowing for visualization of recent dispersal patterns.  相似文献   

16.
Polymorphic Alu-repeat loci of human genome are commonly used as effective genetic markers in population and evolution studies. In this work, the data on genetic structure of two Russian populations from Siberia obtained via analysis of five polymorphic Alu repeats are presented. The urban population was characterized by a slightly higher level of genetic diversity compared to the rural population. The value of genetic differentiation coefficient for the populations studied was 0.57%, pointing to the absence of genetic subdivision within the urban and rural populations. Phylogenetic analysis of these populations, together with literature data, shows that, with respect to the markers examined, the gene pool structure of Russian population is similar to that of other Caucasoid populations.  相似文献   

17.
An improved assay for genotyping the common Alu insertion in the tissue-type plasminogen activator (PLAT) locus is described in this report. The assay is a valuable asset to clinical researchers interested in exploring disease associations with this allele. The automation and improved accuracy will facilitate future population-based studies, as well as clinical screening.  相似文献   

18.
The aim of this study was to show how, in some particular circumstances, a physical marker can be used along with molecular markers in the research of an ancient people movement. A set of five Alu insertions was analysed in 42 subjects from a particular Tunisian group (El Hamma) that has, unlike most of the Tunisian population, a very dark skin, similar to that of sub-Saharans, and in 114 Tunisian subjects (Gabes sample) from the same governorate, but outside the group. Our results showed that the El Hamma group is genetically midway between sub-Saharan populations and North Africans, whereas the Gabes sample is clustered among North Africans. In addition, The A25 Alu insertion, considered characteristic to sub-Saharan Africans, was present in the El Hamma group at a relatively high frequency. This frequency was similar to that found in sub-Saharans from Nigeria, but significantly different from those found in the Gabes sample and in other North African populations. Our molecular results, consistent with the skin color status, suggest a sub-Saharan origin of this particular Tunisian group.  相似文献   

19.
Devor EJ 《Genome biology》2001,2(9):research00-6

Background  

SP100 is a nuclear protein that displays a number of alternative splice variants. In Old World monkeys, apes and humans one of these variants is extended by a retroprocessed pseudogene, HMG1L3, whose antecedent gene is a member of the family of high-mobility-group proteins, HMG1. This is one of only a few documented cases of a retropseudogene being incorporated into another gene as a functional exon. In addition to the HMG1L3 insertion, Old World monkey genomes also contain an Alu sequence within the last SP100-HMG intron. PCR amplification of the 3' end of the SP100 gene using genomic DNAs from human and New World and Old World monkey species, followed by direct sequencing of the amplicons has made dating the HMG1L3 and Alu insertion events possible.  相似文献   

20.
The contextual analysis of nucleotide sequences of 22 Alu repeats arrangement regions in the human genome has been carried out and some of their peculiarities have been revealed. In particular, the occurrence of marked and statistical non-random homology between the repeats and the regions of their integration has been shown. A mechanism of choosing the Alu repeats insertion regions in the genome has been suggested taking into account these peculiarities. Using a sample of the 80 human Alu repeats sequences peculiarities of these repeats location within the genome has been investigated. A tendency to the formation of Alu repeats clusters in various regions of the genome was revealed. A range of possible mechanisms on such Alu clusters emergence is considered. On the basis of the data obtained an "attraction" mechanism, according to which integration of Alu repeats into the definite region of the genome increases the insertion probability of other Alu repeats into the same region, are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号