首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In pathological corneas, accumulation of fibrotic extracellular matrix is characterized by proteoglycans with altered glycosaminoglycans that contribute to the reduced transparency of scarred tissue. During wound healing, keratocytes in the corneal stroma transdifferentiate into fibroblasts and myofibroblasts. In this study, molecular markers were developed to identify keratocyte, fibroblast, and myofibroblast phenotypes in primary cultures of corneal stromal cells and the structure of glycosaminoglycans secreted by these cells was characterized. Quiescent primary keratocytes expressed abundant protein and mRNA for keratocan and aldehyde dehydrogenase class 3 and secreted proteoglycans containing macromolecular keratan sulfate. Expression of these marker compounds was reduced in fibroblasts and also in transforming growth factor-beta-induced myofibroblasts, which expressed high levels of alpha-smooth muscle actin, biglycan, and the extra domain A (EDA or EIIIA) form of cellular fibronectin. Collagen types I and III mRNAs were elevated in both fibroblasts and in myofibroblasts. Expression of these molecular markers clearly distinguishes the phenotypic states of stromal cells in vitro. Glycosaminoglycans secreted by fibroblasts and myofibroblasts were qualitatively similar to and differed from those of keratocytes. Chondroitin/dermatan sulfate abundance, chain length, and sulfation were increased as keratocytes became fibroblasts and myofibroblasts. Fluorophore-assisted carbohydrate electrophoresis analysis demonstrated increased N-acetylgalactosamine sulfation at both 4- and 6-carbons. Hyaluronan, absent in keratocytes, was secreted by fibroblasts and myofibroblasts. Keratan sulfate biosynthesis, chain length, and sulfation were significantly reduced in both fibroblasts and myofibroblasts. The qualitatively similar expression of glycosaminoglycans shared by fibroblasts and myofibroblasts suggests a role for fibroblasts in deposition of non-transparent fibrotic tissue in pathological corneas.  相似文献   

2.
Co-culture of periodontal ligament (PDL) fibroblasts and SCC-25 oral squamous carcinoma cells (OSCC), results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs). Paracrin circuits between CAFs and OSCC cells were hypothesized to regulate the gene expression of matrix remodeling enzymes in their co-culture, which was performed for 7days, followed by analysis of the mRNA/protein expression and activity of metalloproteinases (MMPs), their tissue inhibitors (TIMPs) and other relevant genes. Interleukin1-β, transforming growth factor-β1, fibronectin and αvβ6 integrin have shown to be involved in the regulation of the MMP and TIMP gene expression in co-culture of CAFs and tumor cells. In addition, these cells also cooperated in activation of MMP pro-enzymes. It is particularly interesting that the fibroblast-produced inactive MMP-2 has been activated by the tumor-cell-produced membrane-type 1 matrix metalloproteinase (MT1-MMP). The crosstalk between cancer- and the surrounding fibroblast stromal-cells is essential for the fine tuning of cancer cells invasivity.  相似文献   

3.
Analysis of basigin-null mice has shown that basigin is involved in several important physiological processes including reproductive, immune, and neural activities (Igakura et al., 1998, Dev Biol 194:152-165). However, its molecular mechanism of action in these processes has not yet been established. Our objective here is to determine whether basigin has functional properties similar to its apparent human tumor cell homolog, EMMPRIN, i.e., the ability to stimulate matrix metalloproteinase (MMP) production in fibroblasts (Guo et al. 1997, J Biol Chem 272:24-27). Mouse cells express two major forms of basigin that differ in their degree of glycosylation (molecular weights: 45 and 58 kDa) but, in similar fashion to human EMMPRIN, mouse tumor cells express higher levels of basigin than normal cells. We have used three different methods to show that basigin stimulates MMP expression in fibroblasts. First, recombinant basigin was partially purified from transfected CHO cells by affinity chromatography. This basigin preparation stimulates production of MMPs on addition to fibroblasts in culture. Second, co-culture of basigin-transfected CHO cells with fibroblasts gives rise to increased expression of MMPs as compared to control co-cultures. Third, we employed a novel approach in which a recombinant basigin adenovirus was constructed and used to infect the target fibroblasts, so that mutual stimulation between neighboring fibroblasts would be expected to result. In this method also, basigin stimulates production of MMPs. Finally, we showed that addition of basigin or EMMPRIN antibody, respectively, to recombinant basigin or EMMPRIN adenovirus-infected cells augments stimulation of MMP synthesis, implying that cross-linking of basigin/EMMPRIN in the membrane enhances activity. We conclude that murine basigin and human EMMPRIN have similar MMP-inducing activities and are functional homologs.  相似文献   

4.
5.
Hyaluronan exerts a variety of biological effects on cells including changes in cell migration, proliferation, and matrix metabolism. However, the signaling pathways associated with the action of hyaluronan on cells have not been clearly defined. In some cells, signaling is induced by the loss of cell-hyaluronan interactions. The goal of this study was to use hyaluronan oligosaccharides as a molecular tool to explore the effects of changes in cell-hyaluronan interactions and determine the underlying molecular events that become activated. In this study, hyaluronan oligosaccharides induced the loss of extracellular matrix proteoglycan and collagen from cultured slices of normal adult human articular cartilage. This loss was coincident with an increased expression of matrix metalloproteinase (MMP)-13. MMP-13 expression was also induced in articular chondrocytes by hyaluronan (HA) hexasaccharides but not by HA tetrasaccharides nor high molecular weight hyaluronan. MMP-13 promoter-reporter constructs in CD44-null COS-7 cells revealed that both CD44-dependent and CD44-independent events mediate the induction of MMP-13 by hyaluronan oligosaccharides. Electromobility gel shift assays demonstrated the activation of chondrocyte NFkappaB by hyaluronan oligosaccharides. NFkappaB activation was also documented in C-28/I2 immortalized human chondrocytes by luciferase promoter assays and phosphorylation of IKK-alpha/beta. The link between activation of NFkappaB and MMP-13 induction by HA oligosaccharides was further confirmed through the use of the NFkappaB inhibitor helenalin. Inhibition of MAP kinases also demonstrated the involvement of p38 MAP kinase in the hyaluronan oligosaccharide induction of MMP-13. Our findings suggest that hyaluronan-CD44 interactions affect matrix metabolism via activation of NFkappaB and p38 MAP kinase.  相似文献   

6.
7.
CD44 on lymphocytes binding to its carbohydrate ligand hyaluronan can mediate primary adhesion (rolling interactions) of lymphocytes on vascular endothelial cells. This adhesion pathway is utilized in the extravasation of activated T cells from the blood into sites of inflammation and therefore influences patterns of lymphocyte homing and inflammation. Hyaluronan is a glycosaminoglycan found in the extracellular matrix and is involved in a number of biological processes. We have shown that the expression of hyaluronan on the surface of endothelial cells is inducible by proinflammatory cytokines. However, the manner through which hyaluronan is anchored to the endothelial cell surface so that it can resist shear forces and the mechanism of the regulation of the level of hyaluronan on the cell surface has not been investigated. In order to characterize potential hyaluronan receptors on endothelial cells, we performed analyses of cell surface staining by flow cytometry on intact endothelial cells and ligand blotting assays using membrane fractions. Hyaluronan binding activity was detected as a major species corresponding to the size of CD44, and this was confirmed to be the same by Western blotting and immunoprecipitation. Moreover, alterations in the surface level of hyaluronan after tumor necrosis factor-alpha stimulation is regulated primarily by changes in the cell surface levels of the hyaluronan-binding form of CD44. In laminar flow assays, lymphoid cells specifically roll on hyaluronan anchored by purified CD44 coated on glass tubes, indicating that the avidity of the endothelial CD44/hyaluronan interaction is sufficient to support rolling adhesions under conditions mimicking physiologic shear forces. Together these studies show that CD44 serves to anchor hyaluronan on endothelial cell surfaces, that activation of CD44 is a major regulator of endothelial surface hyaluronan expression, and that the non-covalent interaction between CD44 and hyaluronan is sufficient to provide resistance to shear under physiologic conditions and thereby support the initial steps of lymphocyte extravasation.  相似文献   

8.
The influence of hyaluronan (HA) on the expression of human skin fibroblast elastase-type protease (HSFEp) (Homsy et al, 1988) was studied. At confluency of HSF cultures, hyaluronan increased the level of HSFEp in a time and dose-dependent fashion, Optimal effect was observed after 48 h of culture and at 2 mg/ml HA concentration; the stimulatory, effect of HA could be suppressed by 1 μM cycloheximide. The enhancement of enzyme biosynthesis by HA was dependent on cell proliferation but quasi invariant with HSF passage number (from 7-21).  相似文献   

9.
Imbalance between matrix metalloproteinases (MMPs) and tissue inhibitor of matrix metalloproteinases (TIMPs) is an important control point in tissue remodelling. Several findings have reported a marked MMP/TIMP imbalance in a variety of in vitro models in which oxidative stress was induced. Since previous studies showed that commercial hyaluronan and chondroitin-4-sulphate are able to limit lipid peroxidation during oxidative stress, we investigated the antioxidant capacity of purified human plasma chondroitin-4-sulfate in reducing MMP and TIMP imbalance in a model of ROS-induced oxidative injury in fibroblast cultures. Purified human plasma chondroitin-4-sulfate was added to the fibroblast cultures exposed to FeSO4 plus ascorbate. We assayed cell death, MMP and TIMP mRNA expression and protein activities, DNA damage, membrane lipid peroxidation, and aconitase depletion. FeSO4 plus ascorbate produced severe death of cells and increased MMP-1, MMP-2 and MMP-9 expression and protein activities. It also caused DNA strand breaks, enhanced lipid peroxidation and decreased aconitase. TIMP-1 and TIMP-2 protein levels and mRNA expression remain unaltered. Purified human plasma C4S, at three different doses, restored the MMP/TIMP homeostasis, increased cell survival, reduced DNA damage, inhibited lipid peroxidation and limited impairment of aconitase. These results further support the hypothesis that these biomolecules possess antioxidant activity and by reducing ROS production C4S may limit cell injury produced by MMP/TIMP imbalance.  相似文献   

10.
Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are involved in tissue remodeling by mediating degradation of extracellular matrix components in both physiology and pathology. As MMPs appear to play a key role in the degradation of cartilage matrix in the progression of arthritic disease, MMPs are considered as potential therapeutic targets. The effect of chondroitin sulfate A (CSA) on MMPs in type II collagen-induced experimental arthritis was studied. The anti-arthritic effect of CSA was evidenced by a decrease in marker activities like lysosomal beta-hexosaminidase and beta-glucuronidase. Arthritic animals showed significantly higher activity of MMP2 and MMP9 and increased levels of other MMPs, including MMP3 and MT-1 MMP in cartilage and serum. Treatment with CSA significantly decreased the activity of MMPs, particularly MMP9 in serum and synovial effusate and cartilage. The effect of CSA was further studied by fragmenting CSA into low-molecular-weight oligosaccharides. The oligosaccharide-treated animals showed considerably lower MMP activity (particularly MMP9) compared with arthritic controls. The CSA (and the oligosaccharides derived from it) not only reduced the activity of MMPs but also decreased the protein level expression of MMPs, indicating that the production of MMPs is affected. These results indicate that the antiarthritic effect of CSA involves down-regulation of MMPs, which are critically involved in the progression of arthritic disease.  相似文献   

11.
Hyaluronan must be exported from its site of synthesis, the inner side of plasma membrane, to the extracellular matrix. Here, we identified the multidrug-associated protein MRP5 as the principle hyaluronan exporter from fibroblasts. The expression of the MRP5 (ABC-C5) transporter was silenced in fibroblasts using RNA interference, and a dose-dependent inhibition of hyaluronan export was observed. Hyaluronan oligosaccharides introduced into the cytosol competed with the export of endogenously labeled hyaluronan and the MRP5 substrate fluorescein. Because cGMP is a physiological substrate of MRP5, the intracellular concentrations of cGMP were modulated by the drugs 3-isobutyl-1-methylxanthin, propentofyllin, L-NAME, zaprinast, and bromo-cGMP, and the effects on hyaluronan export were analyzed. Increasing the cGMP levels inhibited hyaluronan export and decreasing it afforded higher concentrations of zaprinast to inhibit the export. Thus, cGMP may be a physiological regulator of hyaluronan export at the level of the export MRP5.  相似文献   

12.
13.
The matrix metalloproteinases (MMPs) belong to a growing family of Zn2+-dependent endopeptidases, secreted or membrane-bound (MT-MMP), that regulate or degrade by proteolytic cleavage protein components of the extracellular matrix, cytokines, chemokines, cell adhesion molecules and a variety of membrane receptors. MMP activity is counterbalanced by their physiological inhibitors, the tissue inhibitors of MMPs (TIMPs), a family of 4 secreted multifunctional proteins that have growth promoting activities. In physiological conditions MMP activity is tightly regulated and altered MMP regulation is associated with pathological processes including inflammation, cell proliferation, cell death and tissue remodeling. The MMP/TIMP system is involved in the development and function of cells of the immune system by promoting their differentiation, activation, migration across basement membranes and tissues. In the last years, data has accumulated indicating that the MMP/TIMP system is expressed in the nervous system where it regulates neuro-immune interactions and plays a major role in pathophysiological processes. In this review, we present recent in vivo and in vitro studies that highlight the contribution of the MMP/TIMP system to various diseases of the nervous system, involving blood brain barrier breakdown, neuroinflammation, glial reactivity, neuronal death, reactive plasticity, and to developmental and physiological processes including cell migration, axonal sprouting and neuronal plasticity. This review also alludes to the beneficial effects of synthetic MMP inhibitors in different animal models of neuropathology. In all, a further understanding of the role of MMPs and TIMPs in the nervous system should contribute to unravel mechanisms of neuronal plasticity and pathology and set the basis of new therapeutic strategies in nervous system disorders based on the development of synthetic MMP inhibitors.  相似文献   

14.
Hyaluronan is synthesized within the cytoplasm and exported into the extracellular matrix through the cell membrane of fibroblasts by the MRP5 transporter. In order to meet the law of electroneutrality, a cation is required to neutralize the emerging negative hyaluronan charges. As we previously observed an inhibiting of hyaluronan export by inhibitors of K(+) channels, hyaluronan export was now analysed by simultaneously measuring membrane potential in the presence of drugs. This was done by both hyaluronan import into inside-out vesicles and by inhibition with antisense siRNA. Hyaluronan export from fibroblast was particularly inhibited by glibenclamide, ropivacain and BaCl(2) which all belong to ATP-sensitive inwardly-rectifying K(ir) channel inhibitors. Import of hyaluronan into vesicles was activated by 150 mM KCl and this activation was abolished by ATP. siRNA for the K(+) channels K(ir)3.4 and K(ir)6.2 inhibited hyaluronan export. Collectively, these results indicated that hyaluronan export depends on concurrent K(+) efflux.  相似文献   

15.
Hyaluronan, a high-molecular-weight glycosaminoglycan of cartilage, is deposited directly into the extracellular space by hyaluronan synthases, while hyaluronan catabolism is mediated by the hyaluronidases. An in vitro cell culture system has been established in which human dermal fibroblasts are induced to undergo chondrogenesis. Here, we describe the differential modulation of the hyaluronidases and the up-regulation of the hyaluronan receptor, CD44, during such chondrogenesis. Dermal fibroblasts, plated in micromass cultures in the presence of lactic acid and staurosporine for 24 h, were then placed in serum-free, chemically defined medium. At 3 days, RNA was extracted and RT-PCR performed using primers for the hyaluronidase genes. Marked increase in HYAL1 expression was observed, with only moderate increases occurring in HYAL2 and HYAL3. No expression of HYAL4 and PH-20, the sperm-associated hyaluronidase, was detected. RNA levels correlated well with changes in hyaluronidase enzyme activity. Finally, greater expression and staining for the hyaluronan receptor, CD44s, the standard form, were detected. Differential expression of the somatic hyaluronidases and CD44-mediated hyaluronan turnover play a critical role in cartilage development from mesenchymal precursors.  相似文献   

16.
17.
The aryl hydrocarbon receptor (AhR) was identified as the receptor for polycyclic aromatic hydrocarbons and related compounds. However, novel data indicate that the AhR binds a variety of unrelated endogenous and exogenous compounds. Although AhR knockout mice demonstrate that this receptor has a role in normal development and physiology, the function of this receptor is still unclear. Recent evidence suggests that AhR signaling also alters the expression of genes involved in matrix metabolism, specifically the matrix metalloproteinases (MMPs). MMP expression and activity is critical to normal physiological processes that require tissue remodeling, as well as in mediating the progression of a variety of diseases. MMPs not only degrade structural proteins, but are also important mediators of cell signaling near or at the cell membrane through exposure of cryptic sites, release of growth factors, and cleavage of receptors. Therefore, AhR modulation of MMP expression and activity may be critical, not only in pathogenesis, but also in understanding the endogenous function of the AhR. In this review we will examine the data indicating a role for the AhR-signaling pathway in the regulation of matrix remodeling, and discuss potential molecular mechanisms.  相似文献   

18.
Tissue plasminogen activator (tPA) is necessary for hippocampal long-term potentiation. Synaptically released zinc also contributes to long-term potentiation, especially in the hippocampal CA3 region. Using cortical cultures, we examined whether zinc increased the concentration and/or activity of tPA. Two hours after a 10-min exposure to 300 μM zinc, expression of tPA and its substrate, plasminogen, were significantly increased, as was the proteolytic activity of tPA. In contrast, increasing extracellular or intracellular calcium levels did not affect the expression or secretion of tPA. Changing zinc influx or chelating intracellular zinc also failed to alter tPA/plasminogen induction by zinc, indicating that zinc acts extracellularly. Zinc-mediated extracellular activation of matrix metalloproteinase (MMP) underlies the up-regulation of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase (Trk) signaling. Consistent with these findings, co-treatment with a neutralizing antibody against BDNF or specific inhibitors of MMPs or Trk largely reversed tPA/plasminogen induction by zinc. Treatment of cortical cultures with p-aminophenylmercuric acetate, an MMP activator, MMP-2, or BDNF alone induced tPA/plasminogen expression. BDNF mRNA and protein expression was also increased by zinc and mediated by MMPs. Thus, an extracellular zinc-dependent, MMP- and BDNF-mediated synaptic mechanism may regulate the levels and activity of tPA.  相似文献   

19.
Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma–cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial–mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.  相似文献   

20.
Computational sequence analysis of matrix metalloproteinases   总被引:12,自引:0,他引:12  
Matrix metalloproteinases (MMP) play a cardinal role in the breakdown of extracellular matrix involved in a variety of biological and pathological processes. Research on MMPs has classified and characterized these enzymes according to their matrix substrate specificity, gene and protein domain structure, and regulation of activity and expression. However, the discovery of new MMPs has introduced a need for a more comprehensive and systematic method of classification and quantitative comparison of known and newly discovered members. This study compiles a sequence alignment, constructs a dendrogram, and calculates physical data and homology percentage assignments in order to obtain further insight into MMP structure-function relationships. Thorough analysis of MMP primary sequence domains, physical data patterns, and statistical analysis of sequence homology yields higher resolution in the similarities and differences that group MMP members.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号