首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
When soluble steroid-receptor complexes are exposed to DNA-cellulose only activated complexes bind. The specificity of the binding was shown by its dependence on the presence of hormone during activation. However, prolonged incubation of non-activated steroid-receptor complexes with DNA-cellulose led to a progressive activation of these complexes. When the same hepatic cytosol containing heat-activated [3H]triamcinolone acetonide-receptor complexes was titrated by high concentrations of nuclei or DNA-cellulose the former bound 75% of the complexes, the later only 40%. This decreased binding was due on the one hand to a lower initial interaction between DNA-cellulose and activated complexes than between nuclei and these complexes and on the other hand to increased losses during washes when DNA-cellulose was used. For these reasons nuclei and not DNA-cellulose should be used when accurate measurements of the concentration of activated complexes are required. When only comparative data are needed DNA-cellulose may, however, be employed.  相似文献   

2.
When soluble steroid-receptor complexes are exposed to DNA-cellulose only activated complexes bind. The specificity of the binding was shown by its dependence on the presence of hormone during activation. However, prolonged incubation of non-activated steroid-receptor complexes with DNA-cellulose led to a progressive activation of these complexes. When the same hepatic cytosol containing heat-activated [3H]triamcinolone acetonide-receptor complexes was titrated by high concentrations of nuclei or DNA-cellulose the former bound 75% of the complexes, the latter only 40%. This decreased binding was due on the one hand to a lower initial interaction between DNA-cellulose and activated complexes than between nuclei and these complexes and on the other hand to increased losses during washes when DNA-cellulose was used. For these reasons nuclei and not DNA-cellulose should be used when accurate measurements of the concentration of activated complexes are required. When only comparative data are needed DNA-cellulose may, however, be employed.  相似文献   

3.
The relationship between glucocorticoid receptor subunit dissociation and activation was investigated by DEAE-cellulose and DNA-cellulose chromatography of monomeric and multimeric [3H]triamcinolone acetonide ([3H]TA)-labeled IM-9 cell glucocorticoid receptors. Multimeric (7-8 nm) and monomeric (5-6 nm) complexes were isolated by Sephacryl S-300 chromatography. Multimeric complexes did not bind to DNA-cellulose and eluted from DEAE-cellulose at a salt concentration (0.2 M KCl) characteristic of unactivated steroid-receptor complexes. Monomeric [3H]TA-receptor complexes eluted from DEAE-cellulose at a salt concentration (20 mM KCl) characteristic of activated steroid-receptor complexes. However, only half of these complexes bound to DNA-cellulose. This proportion could not be increased by heat treatment, addition of bovine serum albumin, or incubation with RNase A. Incubation of monomeric complexes with heat inactivated cytosol resulted in a 2-fold increase in DNA-cellulose binding. Unlike receptor dissociation, this increase was not inhibited by the presence of sodium molybdate. Fractionation of heat inactivated cytosol by Sephadex G-25 chromatography demonstrated that the activity responsible for the increased DNA binding of monomeric [3H]TA-receptor complexes was macromolecular. These results are consistent with a two-step model for glucocorticoid receptor activation, in which subunit dissociation is a necessary but insufficient condition for complete activation. They also indicate that conversion of the steroid-receptor complex to the low-salt eluting form is a reflection of receptor dissociation but not necessarily acquisition of DNA-binding activity.  相似文献   

4.
The possible reversibility of pH induced activation of the glucocorticoid-receptor complex was studied. Generally, this was accomplished by activating rat liver cytosol at pH 8.5 (15 degrees C, 30 min), and then returning it to pH 6.5 for a second incubation (15 degrees C, 30 min). Activation was quantitated by measuring the binding of [3H]triamcinolone acetonide [( 3H]TA)-receptor complexes to DNA-cellulose. When cytosol was incubated at pH 6.5, only 4.1% of the [3H]TA-receptor complexes bound to DNA-cellulose. However, 39.2% of the complexes bound when the cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 47.0% of the steroid-receptor complexes bound. Thus, according to the DNA-cellulose binding assay, pH induced activation was irreversible. In order to visualize both activated and unactivated [3H]TA-receptor complexes during this process, diethylaminoethyl (DEAE)-cellulose chromatography was performed. When cytosol was incubated at pH 6.5, only 19.6% of the [3H]TA-receptor complexes were eluted in the activated form from DEAE-cellulose. However, 67.5% of the complexes were eluted in the activated form when cytosol was pH activated. When pH activation was followed by a second incubation at pH 6.5, 74.9% of the steroid-receptor complexes were eluted in the activated form. Thus, DEAE-cellulose chromatography also showed that pH induced activation was irreversible. This is the first known report that the combination of DNA-cellulose binding and DEAE-cellulose chromatography have been used to study pH induced activation of the glucocorticoid-receptor complex. By these criteria, we conclude that in vitro pH induced activation is irreversible.  相似文献   

5.
The glucocorticoid receptor-glucocorticoid complex of the hepatic cytosol need undergo an "activation" to enable its binding to nuclei, chromatin, or stripped DNA. The conditions of this activation have been studied using native calf thymus DNA absorbed to cellulose. At low ionic strength, activation is very slow at 0 degrees, but, takes place rapidly at 25 degrees, reaching completion at 1 hour. Addition of 10 mm CaCl2 or 150 mm NaCl increases the rate of activation of the receptor at 0 degrees. Neither magnesium nor manganese ions can replace calcium with respect to enabling activation of the steroid-receptor complex to occur at low temperatures. Isofocusing studies reveal that the major component of the unactivated steroid-receptor complex has an isoelectric point of 7.1. Incubation of the steroid-receptor complex at 25 degrees for 30 min leads to its conversion to a form with an isoelectric point of 6.1 concurrent with the development of its ability to bind to DNA-cellulose. Sucrose density gradient analysis reveals that no detectable alteration in the sedimentation coefficient of the steroid-receptor complex occurs during its activation. MnCl2 (20mm) effeciently precipitates the unactivated hormone-receptor complex and to a lesser degree, precipitates the activated hormone-receptor complex.  相似文献   

6.
Recent reports on the binding of glucocorticoid-receptor complexes to rat liver nuclei suggested the presence of components which inhibited the binding. The inhibitory component(s) of the receptor translocation was observed not only in the cytosol of the liver but also in cytosols of the kidney, the spleen and the thymus. The cytoplasmic levels of the inhibitor in these tissues were not modified by the administration of Dexamthasone (DEX). The liver inhibitor was macromolecular and clearly separated from the DEX-receptor complex on DEAE-cellulose chromatography. The mechanism of the inhibition seemed to be an interaction between the inhibitor and the steroid-receptor complex. In addition, the inhibition seemed to be less specific for the bindings of different steroid-receptor complexes to nuclei. The bindings of hepatic 3H-DEX-receptor complex by nuclei derived from livers of adrenalectomized and DEX-treated rats, in the presence or absence of the translocation inhibitor, were similar.  相似文献   

7.
[3H]Dexamethasone-receptor complexes from rat liver cytosol preincubated at 0° bind poorly to DNA-cellulose. However, if the steroid-receptor complex is subjected to gel filtration at 0–4° separating it from the low molecular weight components of cytosol, the steroid-receptor complex becomes “activated” enabling its binding to DNA-cellulose. This activation can be prevented if the gel filtration column is first equilibrated with the low molecular weight components of cytosol. In addition, if adrenalectomized rat liver cytosol, in the absence of exogeneous steroid, is subjected to gel filtration the macromolecular fractions separated from the “small molecules” of that cytosol have much reduced binding activity towards [3H]dexamethasone. These results suggest that rat liver cytosol contains a low molecular weight component(s) which maintains the glucocorticoid receptor in a conformational state that allows the binding of dexamethasone. Furthermore, this component must be removed from the steroid-receptor complex before binding to DNA can occur.  相似文献   

8.
Transcortin-bound gluco- and mineralocorticoids were fractionated on a number of chromatographic systems. Contrary to earlier suggestions of a homogenous unit by competition binding and Scatchard analysis, a polymorphic nature of the globulin was evident with corticosterone on Sephadex A-50 columns (components in 0.4 and 0.6 m KCl) and with synthetic steroids (triamcinolone acetonide, dexamethasone) or natural mineralocorticoids (aldosterone, 18-hydroxy-deoxy-corticosterone) on diethylaminoethyl cellulose-52 gels (species in 0.001 and 0.06 m phosphate). Besides the major component of molecular weight 55,000, a heavier shoulder in the 67,000 molecular weight region was obtained with cortisol, dexamethasone, triamcinolone, and aldosterone from Sephadex G-200 columns, on which binding was reduced in the presence of high salt (0.4 m KCl). Triamcinolone- and dexamethasone-bound components eluted at lower salt concentrations from the DE-52 column than natural steroid-corticosteroid-binding globulin complexes. The various features of serum carrier binding are discussed in terms of steroid-receptor association in hormone-specific target tissues.  相似文献   

9.
Steroid-receptor complexes formed in concentrated cytosol at low temperature, low ionic strength and neutral pH are unable to bind to nuclei. Various procedures are known to promote their 'activation'. In the present work it is shown that an increase in temperature only enhances the rate of the reaction whereas no change in the equilibrium between activated and non-activated complexes is observed. On the contrary an increase in ionic strength or pH, as well as a removal of a low-molecular-weight inhibitor, not only accelerate the reaction but also increase the concentration of activated complexes at equilibrium. Using two steroids differing 3-fold in their affinity for the receptor, no difference was seen in the effect of the bound steroid on receptor activation. When combining various activation procedures it was observed that they acted independently of each other and additively. In all cases they retained their property of either modifying only the rate of the reaction or both its rate and equilibrium. Using changes in pH, it was also possible to induce shifts in the equilibrium between activated and non-activated complexes. After activation at pH 6.5, a first equilibrium was attained. When the pH was increased to 8 the equilibrium was displaced towards higher concentrations of activated complexes. A lowering of the pH resulted in a reversal of steroid-receptor complexes from the activated to the non-activated state. To clearly establish that this was not due to irreversible damage of the receptor, which would render it unable to bind to nuclei, it was shown that the complexes which had reverted to the non-activated state were still susceptible to activation. Regulatory events may thus exist which, for a given level of hormone and receptor, modulate the concentration of activated steroid-receptor complexes.  相似文献   

10.
G P Rossini  G Masci 《Life sciences》1990,47(8):743-751
The dissociation of the steroid from glucocorticoid-receptor-RNA complexes at 5 degrees C was evaluated in cytosolic and nuclear extracts prepared from Hela cells crosslinked in vivo with glutaraldehyde. Sample treatment with catalytically active RNase A prevented the dissociation of the steroid which was induced by sample dilution with buffer. Dilution of the extracts with boiled cytosol, instead, stabilized steroid-receptor interactions. We conclude that some heat-stable factor should be also associated with glucocorticoid-receptor-RNA complexes from crosslinked cells, stabilizing steroid-receptor interactions, and we propose that it could counteract the labilizing effect of RNA.  相似文献   

11.
Guinea pig and rabbit uterine nuclei bound [3H] progesterone in vitro only in the presence of cytosol from estrogen-stimulated uteri. Nuclei from unstimulated and estrogen-stimulated uteri bound progesterone equally well. Nuclei of nontarget tissues also bound progesterone, but to a lesser extent. The rate of nuclear bindins increased with temperature from 0-30 degrees. At 25 degrees nuclear binding remained stable for at least 3 h, but at temperatures of 30 degrees and greater, nuclear binding decreased rapidly after 15 min. Activation of the progesterone-cytoplasmic receptor complex (the change in the complex that enables it to bind quickly to nuclei at 0 degrees) took place slowly at temperatures from 0-5 degrees and rapidly at 10-25 degrees. Activation was facilitated by dilution of the cytosol. Some activation occurred in diluted cytosol in the absence of added progesterone. The cytoplasmic progesterone receptor had a sedimentation coefficient of 7 S when concentrated cytosol (20 mg of protein/ml) was incubated with progesterone at 0 degrees in 5 mM phosphate buffer. Diluting the cytosol and increasing the temperature to 20 degrees caused the sedimentation coefficient to decrease to 5.5 S. Gel filtration of guinea pig uterine cytosol on Sephadex G-100, in the absence of progesterone, yielded a progesterone-binding fraction in the void volume, with a sedimentation coefficient of 5.5 S. The complex of progesterone with the material in the void volume was taken up by nuclei at 0 degrees more rapidly than the complex of progesterone and crude cytosol. The nuclear uptake of progesterone was decreased in phosphate buffer of concentrations greater than 80 mM. Under conditions that favor the nuclear binding of progesterone, the sedimentation coefficient of the cytoplasmic progesterone receptor was 5.5 S. This may be the form of the preceptor which is taken up by nuclei. In decreasing order of effectiveness, unlabeled progesterone, 5 alpha-pregnane-3,20-dione, corticosterone 20 alpha-hydroxy-4-pregnen-3-one, testosterone, estradiol-17 beta, and cortisol competed with [3H] progesterone for binding to nuclei.  相似文献   

12.
The effects of temperature on the kinetics of activation were studied in [3H]triamcinolone acetonide[( 3H]TA)-labeled cytosol preparations from mouse whole brain. After removal of unbound [3H]TA and molybdate (which prevents activation) from the unactivated steroid-receptor complex by gel exclusion chromatography, activation was initiated by incubation at 6-30 degrees C for 0.75-24 min and then rapidly quenched at -5 degrees C with Na2MoO4 (20 mM final concentration). The loss of the 9.2S (unactivated) form of the [3H]TA-receptor complex and the concomitant formation of the 3.8S (activated) form increased dramatically with increases in the activation temperature. These hydrodynamic changes were correlated directly with rapid time- and temperature-dependent increases in the binding of [3H]TA-labeled cytosol to DNA-cellulose (DNA-C). Further analyses of these data revealed a greater than 50-fold increase in the apparent first-order rate constant for the increased binding to DNA-C as the activation temperature was increased from 6 degrees C to 30 degrees C. An Arrhenius plot of these temperature-dependent kinetic constants revealed an energy of activation of 116 kJ. These data support a proposed model for activation of the glucocorticoid-receptor complex that includes the splitting of a 297 kDa, unactivated species into a 92 kDa, activated species.  相似文献   

13.
Thermal "activation" or "transformation" of rat hepatic [6,7-3H]triamcinolone acetonide (TA)-receptor complexes purified in the unactivated state to near homogeneity (Grandics, P., Miller, A., Schmidt, T. J., Mittman, D., and Litwack, G. (1984) J. Biol. Chem. 259, 3173-3180) has been further investigated. The data generated in reconstitution experiments demonstrate that warming (25 degrees C for 30 min) of the purified unactivated complexes promotes their activation as judged by an increase in DNA-cellulose binding, but to a lower extent than that observed after warming of glucocorticoid-receptor complexes in crude cytosols. However, maximal DNA-cellulose binding capacity can be detected in reconstituted systems (also heated at 25 degrees C for 30 min) consisting of purified unactivated [3H]TA-receptor complexes and a cytoplasmic "stimulator(s)." This cytoplasmic factor(s), which does not copurify with the receptor, is heat-stable (90 degrees C for 30 min), excluded from Sephadex G-25, and trypsin-sensitive and stimulates DNA-cellulose binding in a dose-dependent manner. The ability of Na2MoO4 to block thermal activation of the highly purified receptor complexes suggests that this transition metal anion interacts directly with the receptor protein itself. The fact that the cytoplasmic stimulator(s) enhances DNA-cellulose binding of the [3H]TA-receptor complexes without increasing the proportion of those complexes eluted in the activated (low salt) position from DEAE-cellulose is consistent with a proposed two-step model of in vitro activation. During the Na2MoO4-sensitive Step 1, elevated temperature (25 degrees C for 30 min) may directly alter the conformation of the purified receptor complexes (i.e. subunit dissociation or disaggregation), resulting in the appropriate shift in the elution profile of the [3H]TA-receptor complexes on DEAE-cellulose but only in a minimal (approximately 2-3-fold) increase in the binding of these complexes to DNA-cellulose. During the Na2MoO4-insensitive and temperature-independent Step 2, a heat-stable cytoplasmic protein(s) may interact with these thermally activated [3H]TA-receptor complexes and enhance their ability to bind to DNA-cellulose without further increasing the percentage of those complexes which elute from DEAE-cellulose in the activated position. In crude cytosols these two steps would presumably occur simultaneously, and addition of Na2MoO4 prior to warming would block Step 1 and hence Step 2 would not occur.  相似文献   

14.
Rat liver cytosol contains a heat-labile macromolecule that inhibits the binding of the transformed glucocorticoid-receptor complex to nuclei or DNA-cellulose (Milgrom, E., and Atger, M. (1975) J. Steroid Biochem. 6, 487-492; Simons, S. S., Jr., Martinez, H. M., Garcea, R. L., Baxter, J. D., and Tomkins, G. M. (1976) J. Biol. Chem. 251, 334-343. We have developed a quantitative assay for the inhibitor and have purified it 600-700-fold by ammonium sulfate precipitation, ethanol precipitation, and phosphocellulose and Sephacryl S-300 chromatography. The inhibitory activity copurifies with a Mr = 37,000 protein doublet. Under low salt conditions, both the inhibitory activity and the 37-kDa protein doublet behave as high Mr aggregates that subsequently dissociate in the presence of salt. The inhibitor is positively charged at physiological pH, and it is not affected by digestion with several serine proteases or RNase. The inhibitor does not affect the transformation process, and it does not cause the release of steroid-receptor complexes that have been prebound to DNA-cellulose. The inhibitor preparation does not cleave receptors in L-cell cytosol that are covalently labeled with the site-specific affinity steroid [3H]dexamethasone 21-mesylate. If the steroid-receptor complex is first separated from the great majority of cytosol protein by transforming it and binding it to DNA-cellulose, addition of the inhibitor preparation results in receptor cleavage. Under these conditions, cleavage can be blocked with 1-chloro-3-tosylamido-7-amino-L-2-heptanone and antipain, but protease inhibitors do not affect the inhibition of DNA binding that occurs in whole cytosol. The inhibitor acts through an interaction with the receptor, not with DNA. We suggest that the inhibitor may prove to be a useful tool for studying the interaction of the steroid-receptor complex with DNA or nuclei and speculate that it may be important in determining normal events of the receptor cycle as they occur in the intact cell.  相似文献   

15.
The binding of the radioactive synthetic hormonal steroids [3H]dexamethasone (9 alpha-fluoro-11 beta, 17 alpha, 21-trihydroxy-16 alpha-methyl-1,4-pregnadiene-3,20-dione) and [3H]methyltrienolone (17 beta-hydroxy-17 alpha-methyl-4,9,11-estratien-3-one) to cytosol from rat skeletal muscle was studied using dextran-coated charcoal to separate unbound and receptor-bound steroid. The rates of association, dissociation, and degradation of the complexes of dexamethasone and methyltrienolone with receptor were highly dependent on temperature. The temperature dependence of association was greater for dexamethasone, and that of degradation was greater for methyltrienolone. Dissociation rates were insignificant for both steroid-receptor complexes compared to association and degradation rates. The apparent equilibrium dissociation constants for the binding of dexamethasone and methyltrienolone to their receptor binding sites were about 7 and 0.3 nM, respectively, regardless of temperature (0. 15 or 23 degrees C). The lack of influence of temperature on the equilibrium constants indicate that the binding was of hydrophobic character, and the corresponding free energy changes upon binding of dexamethasone and methyltrienolone to their respective binding sites were -41 and -49 kJ mol-1 under equilibrium conditions at 0 degrees C. The apparent maximum number of binding sites determined from Scatchard plots under these conditions was about 1900 fmol/g of tissue, 3500 fmol/mg of DNA or 30 fmol/mg of protein in the case of the dexamethasone receptor, and the corresponding figures for the methyltrienolone were about 100 fmol/g of tissue, 200 fmol/mg of DNA or 2 fmol/mg of protein. The ligand specificities of the binding sites for dexamethasone and methyltrienolone were typical of a glucocorticoid and an androgen receptor, respectively. Both steroid-receptor complexes were retained on DNA-cellulose columns, and were eluted by NaCl at an ionic strength of 0.1. The DNA-cellulose step purified about 20 times, and was used to allow gel exclusion chromatography and electrofocusing. Both steroid-receptor complexes were excluded from a column of Sephadex G-150. Electrofocusing in preparative columns gave reproducible patterns consisting of three peaks for each receptor. The apparent isoelectric points were 5.4, 5.6 and 6.2 for the glucocorticoid receptor, and 5.9, 6.2 and 8.5 for the androgen receptor.  相似文献   

16.
Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an endogenous heat-stable protein with an apparent Mr of 12,300 by Sephadex G-50 chromatography. This endogenous receptor-activating protein coelutes on Sephadex G-50 chromatography with endogenous thioredoxin activity, and it can be replaced in the activating system by purified Escherichia coli thioredoxin. These observations suggest that glucocorticoid receptors in cytosol preparations are maintained in a reduced, steroid-binding state by a NADPH-dependent, thioredoxin-mediated reducing system.  相似文献   

17.
Steroid-receptor complexes (SRC) of estrogen and progestin were isolated from rat liver and purified 1500-2000-fold. The SRC within the composition of cytosol and purified 2000-fold were characterized by gel filtration of Sephadex G-100 and by DEAE-cellulose chromatography. The purified SRC from rat liver were bound to isolated liver cell nuclei of rats of various age (1.5, 6, 12 and 24 month-old). The maximal binding of progestin and estrogen SRC from rat liver was observed in homologous nuclei of 1.5-month-old animals. The binding of SRC by the nuclei decreased progressively with age, reaching its minimum in 24-month-old rats. The observed differences in the SRC binding by cell nuclei of experimental animals may be the cause of functional changes at various stages of ontogenesis.  相似文献   

18.
The binding of hepatic [3H] dexamethasone-receptor complexes to DNA-cellulose and purified nuclei was studied in the immature (3-week) and mature (26-week) Long-Evans male rats to determine the age-associated changes, if any, in the physicochemical properties of glucocorticoid-receptors. Our data show that heat activation (for 45 min at 25 degrees C) significantly enhances the binding of [3H] dexamethasone-receptor complexes to DNA-cellulose and purified nuclei at both the ages, with a greater magnitude in mature rats. Cross-mixing experiments (i.e. binding of activated cytosol from mature rats to nuclei of immature and vice-versa) show receptor specificity. Ca2+ activation (20mM Ca2+ for 45 min at 0 degrees C) also enhances the nuclear and DNA-cellulose binding at both the ages but to a similar extent. These findings indicate that some of the physicochemical properties (e.g. heat activation) of glucocorticoid receptor change, while others (e.g. Ca2+ activation) remain unchanged at these phases of the life span. The observed changes may lead to functional alterations in the tissue response as a function of age.  相似文献   

19.
Neoplastic epithelial duct cell line from human salivary gland (HSG cell line) contains the specific glucocorticoid receptor. The time course study on the uptake of [3H]triamcinolone acetonide (TA), a synthetic glucocorticoid, by intact HSG cells in a growing monolayer culture showed that translocation of glucocorticoid receptors into nuclei occurred at 37 degrees C, but not at 0 degrees C. To elucidate the subcellular distribution of glucocorticoid receptor from HSG cells, a scaled-up-culture was employed. When the cells were incubated with [3H]TA at 0 degrees C, 94% of the receptors were found in the cytosol fraction, while only 6% of the receptors existed in the nuclei. When the cells were incubated at 37 degrees C, 49% of the receptor complexes were distributed in the nuclei and 74% of these nuclear receptor complexes were extractable with 5 mM pyridoxal phosphate.  相似文献   

20.
Dissociation kinetics were determined at 0 degrees C for molybdate-stabilized glucocorticoid-receptor complexes in rat thymus cytosol. Exposure of complexes to dextran-coated charcoal had no effect on their chromatographic properties or transformation status, but dissociation rates measured after charcoal treatment were significantly lower than those determined by displacement with excess competing steroid. The dissociation rate of the [2,4,6,7-3H]prednisolone-receptor complex was similarly modified by chromatography on Lipidex 1000, but not by chromatography on Sephadex G-25 or G-75. It is concluded that treatment of glucocorticoid-receptor complexes with dextran-charcoal or Lipidex 1000 brings about a change in dissociation rate as a consequence of the removal of a lipid component from the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号