首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A closer look at the cholesterol sensor   总被引:5,自引:0,他引:5  
Transport of the sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP)–SREBP complex from the endoplasmic reticulum (ER) to the Golgi is the central event mediating the cholesterol-feedback process in mammalian cells. A conformational change in SCAP is a crucial step; when cholesterol levels are high, the conformation of SCAP enables the SCAP–SREBP complex to associate with an insulin-induced gene (INSIG) retention protein in the ER. By contrast, when cholesterol levels are low, SCAP switches to a conformation that enables the dissociation of the retention protein and the association of SCAP–SREBP with COP II vesicles.  相似文献   

2.
3.
4.
5.
Mammalian cells control their membrane composition by regulating the vesicular transport of membrane-bound sterol regulatory element binding proteins (SREBPs) from endoplasmic reticulum (ER) to Golgi. Transport is blocked by cholesterol, which triggers SCAP, the SREBP escort protein, to bind to Insigs, which are ER retention proteins. The cholesterol trigger mechanism is unknown. Using recombinant SCAP purified in detergent, we show that cholesterol acts by binding with high affinity and specificity to the 767 amino acid octahelical membrane region of SCAP. This octahelical region contains a conserved pentahelical sterol-sensing domain found in six other polytopic membrane proteins. We show that the membrane domain of SCAP is a tetramer and that cholesterol binding is inhibited by cationic amphiphiles, raising the possibility of allosteric regulation by positively charged phospholipids. The current studies show that cells control their cholesterol content through receptor-ligand interactions and not through changes in the physical properties of the membrane.  相似文献   

6.
We have recently shown that 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, an endoplasmic reticulum (ER) membrane protein, is degraded in ER membranes prepared from sterol pretreated cells and that such degradation is catalyzed by a cysteine protease within the reductase membrane domain. The use of various protease inhibitors suggested that degradation of HMG-CoA reductase in vitro is catalyzed by a cathepsin L-type cysteine protease. Purified ER contains E-64-sensitive cathepsin L activity whose inhibitor sensitivity was well matched to that of HMG-CoA reductase degradation in vitro. CLIK-148 (cathepsin L inhibitor) inhibited degradation of HMG-CoA reductase in vitro. Purified cathepsin L also efficiently cleaved HMG-CoA reductase in isolated ER preparations. To determine whether a cathepsin L-type cysteine protease is involved in sterol-regulated degradation of HMG-CoA reductase in vivo, we examined the effect of E-64d, a membrane-permeable cysteine protease inhibitor, in living cells. While lactacystin, a proteasome-specific inhibitor, inhibited sterol-dependent degradation of HMG-CoA reductase, E-64d failed to do so. In contrast, degradation of HMG-CoA reductase in sonicated cells was inhibited by E-64d, CLIK-148, and leupeptin but not by lactacystin. Our results indicate that HMG-CoA reductase is degraded by the proteasome under normal conditions in living cells and that it is cleaved by cathepsin L leaked from lysosomes during preparation of the ER, thus clarifying the apparently paradoxical in vivo and in vitro results. Cathepsin L-dependent proteolysis was observed to occur preferentially in sterol-pretreated cells, suggesting that sterol treatment results in conformational changes in HMG-CoA reductase that make it more susceptible to such cleavage.  相似文献   

7.
8.
A-kinase anchoring protein 12 (AKAP12) is known to function as a scaffold protein and as a putative tumor suppressor. However, little is known about the biological role of AKAP12 in hepatic cells. In this study, we performed micro-array analysis to identify the downstream pathway of AKAP12A, and found that AKAP12A overexpression up-regulates the expressions of several cholesterol-associated genes including HMG-CoA reductase and LDL receptor, which have been reported to be controlled by sterol regulatory element binding protein-2 (SREBP-2). It was found that AKAP12A activates SREBP-2 in hepatic cells, as demonstrated by the presence of its cleavage product, whereas the activation of sterol regulatory element binding protein-1 was not remarkably changed. Moreover, AKAP12A-induced SREBP-2 activation was found to depend on SREBP cleavage-activating protein (SCAP), as inhibition of SCAP by RNAi or sterols blocked SREBP-2 activation in response to AKAP12A overexpression. Interestingly, the hydrophobic amine U18666A caused dramatic movement of AKAP12A from the plasma membrane to cytosol and lysosomal membranes. Moreover, cholesterol depletion from the plasma membrane (using methyl-beta-cyclodextrin) caused a shift of AKAP12A from the plasma membrane to the cytoplasm. Cholesterol binding assay revealed that the N-terminal region of AKAP12A binds directly to cholesterol in vitro. Furthermore, AKAP12A overexpression enhanced [3H]-cholesterol efflux to extracellular acceptors, suggesting that AKAP12A may activate SREBP-2 by increasing cholesterol efflux. In conclusion, the present study suggests that AKAP12A is a novel regulator of cellular cholesterol metabolism.  相似文献   

9.
10.
When added to living cells, sterols such as cholesterol and 25-hydroxycholesterol block the lateral movement of sterol regulatory element-binding proteins (SREBPs) into COPII-coated vesicles on endoplasmic reticulum (ER) membranes and thereby prevent the SREBPs from reaching the Golgi complex for processing to the mature forms that activate cholesterol synthesis. Sorting of SREBPs into COPII vesicles is mediated by Sar1 and the coat proteins Sec23 and Sec24. Here, we explore the mechanism of sterol inhibition in vitro through use of protein pull-down assays. We show that addition of cholesterol or 25-hydroxycholesterol to microsomal membranes in vitro blocks Sar1-dependent binding of the Sec23/24 complex to Scap, the SREBP escort protein. This in vitro inhibition is dependent on the presence of Insig-1, an ER resident protein that is necessary for sterol-mediated inhibition of Scap/SREBP transport in intact cells. Sec23/24 binding to Scap requires the hexapeptide sequence MELADL located in a cytoplasmic loop of Scap. This hexapeptide acts as a sterol-regulated ER sorting signal. These studies define the biochemical parameters responsible for regulated sorting of an ER membrane protein into COPII-coated vesicles.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

19.
20.
The requirement for cholesterol is greater in developing tissues (fetus, placenta, and yolk sac) as compared to adult tissues. Here, we compared cholesterol-induced suppression of sterol synthesis rates in the adult liver to the fetal liver, fetal body, placenta, and yolk sac of the Golden Syrian hamster. Sterol synthesis rates were suppressed maximally in non-pregnant adult livers when cholesterol concentrations were increased. In contrast, sterol synthesis rates were suppressed only marginally in fetal livers, fetal bodies, placentas, and yolk sacs when cholesterol concentrations were increased. To begin to elucidate the mechanism responsible for the blunted response of sterol synthesis rates in fetal tissues to exogenous cholesterol, the ratio of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) to Insig-1 was measured in these same tissues since the ratio of SCAP to the Insigs can impact SREBP processing. The fetal tissues had anywhere from a 2- to 6-fold greater ratio of SCAP to Insig-1 than did the adult liver, suggesting constitutive processing of the SREBPs. As expected, the level of mature, nuclear SREBP-2 was not different in the fetal tissues with different levels of cholesterol whereas it was different in adult livers. These findings indicate that the suppression of sterol synthesis to exogenous sterol is blunted in developing tissues and the lack of response appears to be mediated at least partly through relative levels of Insigs and SCAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号