首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M Ikura  S Spera  G Barbato  L E Kay  M Krinks  A Bax 《Biochemistry》1991,30(38):9216-9228
Heteronuclear 2D and 3D NMR experiments were carried out on recombinant Drosophila calmodulin (CaM), a protein of 148 residues and with molecular mass of 16.7 kDa, that is uniformly labeled with 15N and 13C to a level of greater than 95%. Nearly complete 1H and 13C side-chain assignments for all amino acid residues are obtained by using the 3D HCCH-COSY and HCCH-TOCSY experiments that rely on large heteronuclear one-bond scalar couplings to transfer magnetization and establish through-bond connectivities. The secondary structure of this protein in solution has been elucidated by a qualitative interpretation of nuclear Overhauser effects, hydrogen exchange data, and 3JHNH alpha coupling constants. A clear correlation between the 13C alpha chemical shift and secondary structure is found. The secondary structure in the two globular domains of Drosophila CaM in solution is essentially identical with that of the X-ray crystal structure of mammalian CaM [Babu, Y., Bugg, C. E., & Cook, W.J. (1988) J. Mol. Biol. 204, 191-204], which consists of two pairs of a "helix-loop-helix" motif in each globular domain. The existence of a short antiparallel beta-sheet between the two loops in each domain has been confirmed. The eight alpha-helix segments identified from the NMR data are located at Glu-6 to Phe-19, Thr-29 to Ser-38, Glu-45 to Glu-54, Phe-65 to Lys-77, Glu-82 to Asp-93, Ala-102 to Asn-111, Asp-118 to Glu-127, and Tyr-138 to Thr-146. Although the crystal structure has a long "central helix" from Phe-65 to Phe-92 that connects the two globular domains, NMR data indicate that residues Asp-78 to Ser-81 of this central helix adopt a nonhelical conformation with considerable flexibility.  相似文献   

2.
Molecular dynamics (MD) simulations were employed to investigate the structure, dynamics, and local base-pair step deformability of the free 16S ribosomal helix 44 from Thermus thermophilus and of a canonical A-RNA double helix. While helix 44 is bent in the crystal structure of the small ribosomal subunit, the simulated helix 44 is intrinsically straight. It shows, however, substantial instantaneous bends that are isotropic. The spontaneous motions seen in simulations achieve large degrees of bending seen in the X-ray structure and would be entirely sufficient to allow the dynamics of the upper part of helix 44 evidenced by cryo-electron microscopic studies. Analysis of local base-pair step deformability reveals a patch of flexible steps in the upper part of helix 44 and in the area proximal to the bulge bases, suggesting that the upper part of helix 44 has enhanced flexibility. The simulations identify two conformational substates of the second bulge area (bottom part of the helix) with distinct base pairing. In agreement with nuclear magnetic resonance (NMR) and X-ray studies, a flipped out conformational substate of conserved 1492A is seen in the first bulge area. Molecular dynamics (MD) simulations reveal a number of reversible alpha-gamma backbone flips that correspond to transitions between two known A-RNA backbone families. The flipped substates do not cumulate along the trajectory and lead to a modest transient reduction of helical twist with no significant influence on the overall geometry of the duplexes. Despite their considerable flexibility, the simulated structures are very stable with no indication of substantial force field inaccuracies.  相似文献   

3.
4.
We present the three-dimensional (3D) solution structure of a calcium-binding protein from Entamoeba histolytica (EhCaBP), an etiologic agent of amoebiasis affecting millions worldwide. EhCaBP is a 14.7 kDa (134 residues) monomeric protein thought to play a role in the pathogenesis of amoebiasis. The 3D structure of Ca(2+)-bound EhCaBP has been derived using multidimensional nuclear magnetic resonance (NMR) spectroscopic techniques. The study reveals the presence of two globular domains connected by a flexible linker region spanning 8 amino acid residues. Each domain consists of a pair of helix-loop-helix motifs similar to the canonical EF-hand motif of calcium-binding proteins. EhCaBP binds to four Ca(2+) with high affinity (two in each domain), and it is structurally related to calmodulin (CaM) and troponin C (TnC) despite its low sequence homology ( approximately 29%) with these proteins. NMR-derived structures of EhCaBP converge within each domain with low RMSDs and angular order-parameters for backbone torsion angles close to 1.0. However, the presence of a highly flexible central linker region results in an ill-defined orientation of the two domains relative to one other. These findings are supported by backbone (15)N relaxation rate measurements and deuterium exchange studies, which reveal low structural order parameters for residues in the central linker region. Earlier, biochemical studies showed that EhCaBP is involved in a novel signal transduction mechanism, distinct from CaM. A possible reason for such a functional diversity is revealed by a detailed comparison of the 3D structure of EhCaBP with that of CaM and TnC. The studies indicate a more open C-terminal domain for EhCaBP with larger water exposed total hydrophobic surface area as compared to CaM and TnC. Further dissimilarities between the structures include the presence of two Gly residues (G63 and G67) in the central linker region of EhCaBP, which seem to impart it a greater flexibility compared to CaM and TnC and also play crucial role in its biological function. Thus, unlike in CaM and TnC, wherein the length and/or composition of the central linker have been found to be crucial for their function, in EhCaBP, both flexibility as well as amino acid composition is required for the function of the protein.  相似文献   

5.
We have recently investigated by far-UV circular dichroism (CD) the effects of Ca(2+) binding and the phosphorylation of Ser 81 for the synthetic peptide CaM [54-106] encompassing the Ca(2+)-binding loops II and III and the central alpha helix of calmodulin (CaM) (Arrigoni et al., Biochemistry 2004, 43, 12788-12798). Using computational methods, we studied the changes in the secondary structure implied by these spectra with the aim to investigate the effect of Ca(2+) binding and the functional role of the phosphorylation of Ser 81 in the action of the full-length CaM. Ca(2+) binding induces the nucleation of helical structure by inducing side chain stacking of hydrophobic residues. We further investigated the effect of Ca(2+) binding by using near-UV CD spectroscopy. Molecular dynamics simulations of different fragments containing the central alpha-helix of CaM using various experimentally determined structures of CaM with bound Ca(2+) disclose the structural effects provided by the phosphorylation of Ser 81. This post-translational modification is predicted to alter the secondary structure in its surrounding and also to hinder the physiological bending of the central helix of CaM through an alteration of the hydrogen bond network established by the side chain of residue 81. Using quantum mechanical methods to predict the CD spectra for the frames obtained during the MD simulations, we are able to reproduce the relative experimental intensities in the far-UV CD spectra for our peptides. Similar conformational changes that take place in CaM [54-106] upon Ca(2+) binding and phosphorylation may occur in the full-length CaM.  相似文献   

6.
The solution structures of complexes between calcium-saturated calmodulin (Ca (2+)/CaM) and a CaM-binding domain of the HIV-1 matrix protein p17 have been determined by small-angle X-ray scattering with use of synchrotron radiation as an intense and stable X-ray source. We used three synthetic peptides of residues 11-28, 26-47, and 11-47 of p17 to demonstrate the diversity of CaM-binding conformation. Ca (2+)/CaM complexed with residues 11-28 of p17 adopts a dumbbell-like structure at a molar ratio of 1:2, suggesting that the two peptides bind each lobe of CaM, respectively. Ca (2+)/CaM complexed with residues 26-47 of p17 at a molar ratio of 1:1 adopts a globular structure similar to the NMR structure of Ca (2+)/CaM bound to M13, which adopted a compact globular structure. In contrast to these complexes, Ca (2+)/CaM binds directly with both CaM-binding sites of residues 11-47 of p17 at a molar ratio of 1:1, which induces a novel structure different from known structures previously reported between Ca (2+)/CaM and peptide. A tertiary structural model of the novel structure was constructed using the biopolymer module of Insight II 2000 on the basis of the scattering data. The two domains of CaM remain essentially unchanged upon complexation. The hinge motions, however, occur in a highly flexible linker of CaM, in which the electrostatic residues 74Arg, 78Asp, and 82Glu interact with N-terminal electrostatic residues of the peptide (residues 12Glu, 15Arg, and 18Lys). The acidic residues in the N-terminal domain of CaM interact with basic residues in a central part of the peptide, thereby enabling the central part to change the conformations, while an acidic residue in the C-terminal domain interacts with two basic residues in the two helical sites of the peptide. The overall structure of the complex adopts an extended structure with the radius of gyration of 20.5 A and the interdomain distance of 34.2 A. Thus, the complex is principally stabilized by electrostatic interactions. The hydrophobic patches of Ca (2+)/CaM are not responsible for the binding with the hydrophobic residues in the peptide, suggesting that CaM plays a role to sequester the myristic acid moiety of p17.  相似文献   

7.
The central helical region of calmodulin (CaM) includes amino acids 65-92 and serves to separate the two pairs of Ca2(+)-binding sites. This region may impart conformational flexibility and also interact with target proteins. The functional effects of deleting two, three, five, or eight amino acids from the central helix were monitored by examining the activation of phosphodiesterase, smooth muscle myosin light chain (MLC) kinase, and Ca2+/CaM-dependent protein kinase II (CaM kinase II). CaMDM(-8), a calmodulin-deletion mutant with 8 amino acids deleted from the middle of the central helix, failed to activate MLC kinase, phosphodiesterase, or CaM kinase II at physiologically significant concentrations of activator but also had altered electrophoretic mobility and tyrosine fluorescence properties suggesting major changes in the structure of this mutant. Deletion of five amino acids (77-81) resulted in an increase in apparent Kact for phosphodiesterase (150-fold), CaM kinase II (25-fold), and MLC kinase (5-fold) relative to CaM. The maximal autophosphorylation activity of CaM kinase II was also diminished 70% with CaMDM(-5). For phosphodiesterase activation, CaMDM(-2) has a 15-fold increase in apparent Kact while CaMDM(-3) had an apparent Kact value only 3-fold higher than native CaM. In contrast, the activation of MLC kinase by the two (79-80)- and three (79-81)-amino acid deletion mutants were indistinguishable from each other or native CaM. CaMDM(-2) and CaMDM(-3) stimulated CaM kinase II autophosphorylation to 85 and 70%, respectively, of native CaM with less than a 2-fold increase in Kact. Therefore, all deletions in the central helix of CaM reduce the efficiency of phosphodiesterase activation as reflected by substantial alterations in Kact. MLC kinase activation, however, is relatively insensitive to small two or three amino acid deletions. CaM kinase II interacts with the central helix deletion mutants in a complex manner with alterations in both the Kact and the maximum activity. The data suggest the central helix of CaM may serve as a flexible tether for MLC kinase (and to a lesser extent CaM kinase II) but that an extended conformation of CaM, as predicted from the crystal structure, may be required for phosphodiesterase activation.  相似文献   

8.
Chemical crosslinking in combination with Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) has significant potential for studying protein structures and protein-protein interactions. Previously, cisplatin has been shown to be a crosslinker and crosslinks multiple methionine (Met) residues in apo-calmodulin (apo-CaM). However, the inter-residue distances obtained from nuclear magnetic resonance structures are inconsistent with the measured distance constraints by crosslinking. Met residues lie too far apart to be crosslinked by cisplatin. Here, by combining FTICR MS with a novel computational flexibility analysis, the flexible nature of the CaM structure is found to be key to cisplatin crosslinking in CaM. It is found that the side chains of Met residues can be brought together by flexible motions in both apo-CaM and calcium-bound CaM (Ca(4) -CaM). The possibility of cisplatin crosslinking Ca(4) -CaM is then confirmed by MS data. Therefore, flexibility analysis as a fast and low-cost computational method can be a useful tool for predicting crosslinking pairs in protein crosslinking analysis and facilitating MS data analysis. Finally, flexibility analysis also indicates that the crosslinking of platinum to pairs of Met residues will effectively close the nonpolar groove and thus will likely interfere with the binding of CaM to its protein targets, as was proved by comparing assays for cisplatin-modified/unmodified CaM binding to melittin. Collectively, these results suggest that cisplatin crosslinking of apo-CaM or Ca(4) -CaM can inhibit the ability of CaM to recognize its target proteins, which may have important implications for understanding the mechanism of tumor resistance to platinum anticancer drugs.  相似文献   

9.
10.
The three-dimensional structures of the two peptides plantaricin E (plnE; 33 residues) and plantaricin F (plnF; 34 residues) constituting the two-peptide bacteriocin plantaricin EF (plnEF) have been determined by nuclear magnetic resonance (NMR) spectroscopy in the presence of DPC micelles. PlnE has an N-terminal alpha-helix (residues 10-21), and a C-terminal alpha-helix-like structure (residues 25-31). PlnF has a long central alpha-helix (residues 7-32) with a kink of 38+/-7 degrees at Pro20. There is some flexibility in the helix in the kink region. Both helices in plnE are amphiphilic, while the helix in plnF is polar in its N-terminal half and amphiphilic in its C-terminal half. The alpha-helical content obtained by NMR spectroscopy is in agreement with CD studies. PlnE has two GxxxG motifs which are putative helix-helix interaction motifs, one at residues 5 to 9 and one at residues 20 to 24, while plnF has one such motif at residues 30 to 34. The peptides are flexible in these GxxxG regions. It is suggested that the two peptides lie parallel in a staggered fashion relative to each other and interact through helix-helix interactions involving the GxxxG motifs.  相似文献   

11.
The solution structure and backbone dynamics of the recombinant potato carboxypeptidase inhibitor (PCI) have been characterized by NMR spectroscopy. The structure, determined on the basis of 497 NOE-derived distance constraints, is much better defined than the one reported in a previous NMR study, with an average pairwise backbone root-mean-square deviation of 0.5 A for the well-defined region of the protein, residues 7-37. Many of the side-chains show now well-defined conformations, both in the hydrophobic core and on the surface of the protein. Overall, the solution structure of free PCI is similar to the one that it shows in the crystal of the complex with carboxypeptidase A. However, some local differences are observed in regions 15-21 and 27-29. In solution, the six N-terminal and the two C-terminal residues are rather flexible, as shown by 15N backbone relaxation measurements. The flexibility of the latter segment may have implications in the binding of the inhibitor by the enzyme. All the remaining residues in the protein are essentially rigid (S2 > 0.8) with the exception of two of them at the end of a short 3/10 helix. Despite the small size of the protein, a number of amide protons are protected from exchange with solvent deuterons. The slowest exchanging protons are those in a small two-strand beta-sheet. The unfolding free energies, as calculated from the exchange rates of these protons, are around 5 kcal/mol. Other protected amide protons are located in the segment 7-12, adjacent to the beta-sheet. Although these residues are not in an extended conformation in PCI, the equivalent residues in structurally homologous proteins form a third strand of the central beta-sheet. The amide protons in the 3/10 helix are only marginally protected, indicating that they exchange by a local unfolding mechanism, which is consistent with the increase in flexibility shown by some of its residues. Backbone alignment-based programs for folding recognition, as opposite to disulfide-bond alignments, reveal new proteins of unrelated sequence and function with a similar structure.  相似文献   

12.
The backbone dynamic properties of uniformly (15)N-labeled calcium-saturated calmodulin (Ca(2+)-CaM) in 35% 2,2,2-trifluoroethanol (TFE) have been examined by (15)N NMR relaxation methods. This particular solvent was chosen in order to mimic the conditions in which CaM was crystallized, which included the presence of alcohols. Special attention was paid to the central linker region of Ca(2+)-CaM, which is a long, solvent-exposed alpha-helix in the crystal structure but is known to be partially unwound and flexible in solution. (15)N T(1), T(2), and (15)N-[(1)H] NOE values were determined for both Ca(2+)-CaM in H(2)O and Ca(2+)-CaM in 35% TFE, and the results indicated that the presence of 35% TFE did indeed induce a more ordered conformation in the central linker, with order parameters for Asp78-Glu80 of 0.29, 0.17, and 0.27 in H(2)O and 0.82, 0.66, and 0.64 in 35% TFE. However, (15)N-[(1)H] NOE values showed that these residues were still slightly more flexible than the rest of the molecule in 35% TFE (Asp78-Glu80 (15)N-[(1)H] NOE=0.46, 0.46, and 0.51). Furthermore, there is still independent motion of the two lobes of Ca(2+)-CaM in 35% TFE, with motional correlation times of approximately 10 and approximately 9 ns for the N- and C-lobes, respectively, indicating that 35% TFE was not sufficient to force Ca(2+)-CaM into a rigid dumbbell-shaped molecule as seen in the crystal structure. Additional factors that could further stabilize the structure of CaM in the crystal include pH, temperature, and crystal packing.  相似文献   

13.
Calmodulin (CaM) is a highly conserved eukaryotic protein that binds specifically to more than 100 target proteins in response to calcium (Ca2+) signal. CaM adopts a considerable degree of structural plasticity to accomplish this physiological role; however, the nature and extent of this plasticity remain to be fully understood. Here, we report the crystal structure of a novel trans conformation of ligand-free CaM where the relative disposition of two lobes of CaM is different, a conformation to-date not reported. While no major structural changes were observed in the independent N- and C-lobes as compared with previously reported structures of Ca2+/CaM, the central helix was tilted by ∼90° at Arg75. This is the first crystal structure of CaM to show a drastic conformational change in the central helix, and reveals one of several possible conformations of CaM to engage with its binding partner.  相似文献   

14.
The three-dimensional structure of the active site region of the enzyme HIV-1 integrase is not unambiguously known. This region includes a flexible peptide loop that cannot be well resolved in crystallographic determinations. Here we present two different computational approaches with different levels of resolution and on different time-scales to understand this flexibility and to analyze the dynamics of this part of the protein. We have used molecular dynamics simulations with an atomic model to simulate the region in a realistic and reliable way for 1 ns. It is found that parts of the loop wind up after 300 ps to extend an existing helix. This indicates that the helix is longer than in the earlier crystal structures that were used as basis for this study. Very recent crystal data confirms this finding, underlining the predictive value of accurate MD simulations. Essential dynamics analysis of the MD trajectory yields an anharmonic motion of this loop. We have supplemented the MD data with a much lower resolution Brownian dynamics simulation of 600 ns length. It provides ideas about the slow-motion dynamics of the loop. It is found that the loop explores a conformational space much larger than in the MD trajectory, leading to a "gating"-like motion with respect to the active site.  相似文献   

15.
The interaction between calmodulin (CaM) and Al(3+) was studied by spectroscopic methods. Heteronuclear two-dimensional NMR data indicated that peaks related to the both lobes and middle of the central helix of CaM are largely affected by Al(3+). But chemical shift perturbation suggested that overall conformation of Ca(2+)-loaded CaM is not changed by Al(3+) binding. It is thought that Al(3+) interaction to the middle of the central helix is a key for the property of CaM's target recognition. If the structure and/or flexibility of the central helix are/is changed by Al(3+), target affinity to CaM must be influenced by Al(3+). Thus, we performed surface plasmon resonance experiments to observe the effect of Al(3+) on the target recognition by CaM. The data clearly indicated that target affinity to CaM is reduced by addition of Al(3+). All the results presented here support a hypothesis that Al(3+) may affect on the Ca(2+) signaling pathway in cells.  相似文献   

16.
A 20-ns molecular dynamics simulation of Ca(2+)-calmodulin (CaM) in explicit solvent is described. Within 5 ns, the extended crystal structure adopts a compact shape similar in dimension to complexes of CaM and target peptides but with a substantially different orientation between the N- and C-terminal domains. Significant interactions are observed between the terminal domains in this compact state, which are mediated through the same regions of CaM that bind to target peptides derived from protein kinases and most other target proteins. The process of compaction is driven by the loss of helical structure in two separate regions between residues 75-79 and 82-86, the latter being driven by unfavorable electrostatic interactions between acidic residues. In the first 5 ns of the simulation, a substantial number of contacts are observed between the first helix of the N-terminal domain and residues 74-77 of the central linker. These contacts are correlated with the closing of the second EF-hand, indicating a mechanism by which they can lower calcium affinity in the N-terminal domain.  相似文献   

17.
Hsc70与auxilin蛋白组成的系统是Hsp70/Hsp40分子伴侣系统家族的一员,在热休克反应中发挥重要作用。本文为得出auxilin蛋白J结构域的关键氨基酸,首先采用由二硫键交联的Hsc70 R171C与auxilin D876C的复合物结晶结构作为初始模型,进行分子动力学模拟,通过比较平衡后的结合部位发现,将形成二硫键的氨基酸突变为原来的氨基酸结构在结合位点上与生化结果较为相近,之后利用此结构通过拉伸动力学模拟分析了auxilin蛋白J结构域与Hsc70的ATPase功能域的解离过程,并探讨了Hsc70与auxilin蛋白之间的相互作用力。结果表明位于HPD loop上的His874,Asp876,Thr879,螺旋Ⅲ上的Glu884,Asn895,Asp896,Ser899,Glu902,Asn903为关键氨基酸,这些数据符合之前核磁共振实验证实的T抗原J结构域的HPD基序和螺旋Ⅲ与Hsc70的ATPase功能域之间的相互作用。  相似文献   

18.
The amplitude of protein backbone NH group motions on a time-scale faster than molecular tumbling may be determined by analysis of (15)N NMR relaxation data according to the Lipari-Szabo model free formalism. An internet-accessible database has been compiled containing 1855 order parameters from 20 independent NMR relaxation studies on proteins whose three-dimensional structures are known. A series of statistical analyses has been performed to identify relationships between the structural features and backbone dynamics of these proteins. Comparison of average order parameters for different amino acid types indicates that amino acids with small side-chains tend to have greater backbone flexibility than those with large side-chains. In addition, the motions of a given NH group are also related to the sizes of the neighboring amino acids in the primary sequence. The secondary structural environment appears to influence backbone dynamics relatively weakly, with only subtle differences between the order parameter distributions of loop structures and regular hydrogen bonded secondary structure elements. However, NH groups near helix termini are more mobile on average than those in the central regions of helices. Tertiary structure influences are also relatively weak but in the expected direction, with more exposed residues being more flexible on average than residues that are relatively inaccessible to solvent.  相似文献   

19.
The solution structure of a fragment of the human U1A spliceosomal protein containing residues 2 to 117 (U1A117) determined using multi-dimensional heteronuclear NMR is presented. The C-terminal region of the molecule is considerably more ordered in the free protein than thought previously and its conformation is different from that seen in the crystal structure of the complex with U1 RNA hairpin II. The residues between Asp90 and Lys98 form an α-helix that lies across the β-sheet, with residues Ile93, Ile94 and Met97 making contacts with Leu44, Phe56 and Ile58. This interaction prevents solvent exposure of hydrophobic residues on the surface of the β-sheet, thereby stabilising the protein. Upon RNA binding, helix C moves away from this position, changing its orientation by 135° to allow Tyr13, Phe56 and Gln54 to stack with bases of the RNA, and also allowing Leu44 to contact the RNA. The new position of helix C in the complex with RNA is stabilised by hydrophobic interactions from Ile93 and Ile94 to Ile58, Leu 41, Val62 and His10, as well as a hydrogen bond between Ser91 and Thr11. The movement of helix C mainly involves changes in the main-chain torsion angles of Thr89, Asp90 and Ser91, the helix thereby acting as a "lid" over the RNA binding surface.  相似文献   

20.
Calmodulin (CaM) is a highly conserved 17 kDa eukaryotic protein that can bind specifically to over 100 protein targets in response to a Ca(2+) signal. Ca(2+)-CaM requires a considerable degree of structural plasticity to accomplish this physiological role; however, the nature and extent of this plasticity remain poorly characterized. Here, we present the 1.0 A crystal structure of Paramecium tetraurelia Ca(2+)-CaM, including 36 discretely disordered residues and a fifth Ca(2+) that mediates a crystal contact. The 36 discretely disordered residues are located primarily in the central helix and the two hydrophobic binding pockets, and reveal correlated side-chain disorder that may assist target-specific deformation of the binding pockets. Evidence of domain displacements and discrete backbone disorder is provided by translation-libration-screw (TLS) analysis and multiconformer models of protein disorder, respectively. In total, the evidence for disorder at every accessible length-scale in Ca(2+)-CaM suggests that the protein occupies a large number of hierarchically arranged conformational substates in the crystalline environment and may sample a quasi-continuous spectrum of conformations in solution. Therefore, we propose that the functionally distinct forms of CaM are less structurally distinct than previously believed, and that the different activities of CaM in response to Ca(2+) may result primarily from Ca(2+)-mediated alterations in the dynamics of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号