首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The red-most fluorescence emission of photosystem I (733 nm at 4 K) is associated with the Lhca4 subunit of the antenna complex. It has been proposed that this unique spectral feature originates from the low energy absorption band of an excitonic interaction involving chlorophyll A5 and a second chlorophyll a molecule, probably B5 (Morosinotto, T., Breton, J., Bassi, R., and Croce, R. (2003) J. Biol. Chem. 278, 49223-49229). Because of the short distances between chromophores in Lhc proteins, the possibility that other pigments are involved in the red-shifted spectral forms could not be ruled out. In this study, we have analyzed the pigment-pigment interactions between nearest neighboring chromophores in Lhca4. This was done by deleting individual chlorophyll binding sites by mutagenesis, and analyzing the changes in the spectroscopic properties of recombinant proteins refolded in vitro. The red-shifted (733 nm) fluorescence peak, the major target of this analysis, was lost upon mutations affecting sites A4, A5, and B5 and was modified by mutating site B6. In agreement with the shorter distance between chlorophylls A5 and B5 (7.9 A) versus A4 and A5 (12.2 A) in Lhca4 (Ben-Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635), we conclude that the low energy spectral form originates from an interaction involving pigments in sites A5 and B5. Mutation at site B6, although inducing a 15-nm blue-shift of the emission peak, maintains the red-shifted emission. This implies that chromophores responsible for the interaction are conserved and suggests a modification in the pigment organization. Besides the A5-B5 pair, evidence for additional pigment-pigment interactions between chlorophylls in sites B3-A3 and B6-A6 was obtained. However, these features do not affect the red-most spectral form responsible for the 733-nm fluorescence emission band.  相似文献   

2.
The selectively red excited emission spectrum, at room temperature, of the in vitro reconstituted Lhca4, has a pronounced non-equilibrium distribution, leading to enhanced emission from the directly excited low-energy pigments. Two different emitting forms (or states), with maximal emission at 713 and 735nm (F713 and F735) and unusual spectral properties, have been identified. Both high-energy states are populated when selective excitation is into the F735 state and the fluorescence anisotropy spectrum attains the value of 0.3 in the wavelength region where both emission states are present. This indicates that the two states are on the same Lhca4 complex and have transition dipoles with similar orientation.  相似文献   

3.
Photosystem I of higher plants is characterized by red-shifted spectral forms deriving from chlorophyll chromophores. Each of the four Lhca1 to -4 subunits exhibits a specific fluorescence emission spectrum, peaking at 688, 701, 725, and 733 nm, respectively. Recent analysis revealed the role of chlorophyll-chlorophyll interactions of the red forms in Lhca3 and Lhca4, whereas the basis for the fluorescence emission at 701 nm in Lhca2 is not yet clear. We report a detailed characterization of the Lhca2 subunit using molecular biology, biochemistry, and spectroscopy and show that the 701-nm emission form originates from a broad absorption band at 690 nm. Spectroscopy on recombinant mutant proteins assesses that this band represents the low energy form of an excitonic interaction involving two chlorophyll a molecules bound to sites A5 and B5, the same protein domains previously identified for Lhca3 and Lhca4. The resulting emission is, however, substantially shifted to higher energies. These results are discussed on the basis of the structural information that recently became available from x-ray crystallography (Ben Shem, A., Frolow, F., and Nelson, N. (2003) Nature 426, 630-635). We suggest that, within the Lhca subfamily, spectroscopic properties of chromophores are modulated by the strength of the excitonic coupling between the chromophores A5 and B5, thus yielding fluorescence emission spanning a large wavelength interval. It is concluded that the interchromophore distance rather than the transition energy of the individual chromophores or the orientation of transition vectors represents the critical factor in determining the excitonic coupling in Lhca pigment-protein complexes.  相似文献   

4.
The interrelation between spectral and structural–functional properties of LhcIIb was studied. The dipole strength of the main Qy bands of chlorophylls (Chl a 30.8 D2; Chl b 18.5 D2) and chlorophyll a/b ratio (Chl a/Chl b = 7 : 6) were determined for LhcIIb. The Chl a/Chl b value shows that the subunit of this complex contains seven Chl a and six Chl b molecules. Individual bands of chlorophylls (bands in stokes and anti-Stokes parts at 77 K were Lorentzian and Gaussian, respectively) were resolved using synchronized deconvolution of absorption, CD, and LD bands of chlorophylls. Seven of these bands belonged to Chl a. Parameters of absorption bands of Chl a indicate that seven molecules represent a united cluster (heptamer) with exciton interactions, determining the spectrum of LhcIIb in the Chl a absorption region. Parameters of absorption bands of Chl b show the existence of three clusters: monomer (639.6 nm), dimer (645.2 and 647.4 nm), and trimer (649.8 and 654.1 nm). These clusters and their properties agree with the well-known structure of porphyrin groups of the LhcIIb subunit (Kuhlbrandt, 1994). A distorted ring of seven porphyrins in the stromal range of the subunit corresponds to Chl a heptamer; a separately located molecule near the N-terminal domain on the stromal side of the subunit corresponds to Chl b monomer; a dimer and a trimer of porphyrins in the lumenal range of the subunit correspond to the dimer and trimer of Chl b, respectively. The calculated lifetimes of the excitation energy (exciton) transfer in subunit and trimer of LhcIIb confirm this location of pigments. The geometry of the Chl a heptamer (mutual orientation of transition dipole moments) was determined by the steady-state Kasha–Tinoco approximation using parameters of individual bands of exciton splitting. The calculated parameters of mutual orientation of Chl a dipoles agree with the topography of the stromal porphyrins found by electron crystallography (Kuhlbrandt, 1994). A structural model of the granal multicentral macrocomplex of PSII (MPSII) is suggested. The lifetimes of the exciton migration between the main pigment–protein compartments of MPSII were calculated. The results of calculation are consistent with the structural model of the photosystem. The location of pigments provides for fast exciton hopping between Chl a clusters of neighboring proteins in the MPSII along the stromal surface within the membrane (5-25 psec) and between stacked membranes (40 psec) of chloroplast grana.  相似文献   

5.
The specific functions of the light-harvesting proteins Lhca2 and Lhca3 were studied in Arabidopsis ecotype Colombia antisense plants in which the proteins were individually repressed. The antisense effect was specific in each plant, but levels of Lhca proteins other than the targeted products were also affected. The contents of Lhca1 and Lhca4 were unaffected, but Lhca3 (in Lhca2-repressed plants) was almost completely depleted, and Lhca2 decreased to about 30% of wild-type levels in Lhca3-repressed plants. This suggests that the Lhca2 and Lhca3 proteins are in physical contact with each other and that they require each other for stability. Photosystem I fluorescence at 730 nm is thought to emanate from pigments bound to Lhca1 and Lhca4. However, fluorescence emission and excitation spectra suggest that Lhca2 and Lhca3, which fluoresce in vitro at 680 nm, also could contribute to far-red fluorescence in vivo. Spectral forms with absorption maxima at 695 and 715 nm, apparently with emission maxima at 702 and 735 nm, respectively, might be associated with Lhca2 and Lhca3.  相似文献   

6.
Arabidopsis plants in which the major trimeric light harvesting complex (LHCIIb) is eliminated by antisense expression still exhibit the typical macrostructure of photosystem II in the granal membranes. Here the detailed analysis of the composition and the functional state of the light harvesting antennae of both photosystem I and II of these plants is presented. Two new populations of trimers were found, both functional in energy transfer to the PSII reaction center, a homotrimer of CP26 and a heterotrimer of CP26 and Lhcb3. These trimers possess characteristic features thought to be specific for the native LHCIIb trimers they are replacing: the long wavelength form of lutein and at least one extra chlorophyll b, but they were less stable. A new population of loosely bound LHCI was also found, contributing to an increased antenna size for photosystem I, which may in part compensate for the loss of the phosphorylated LHCIIb that can associate with this photosystem. Thus, the loss of LHCIIb has triggered concerted compensatory responses in the composition of antennae of both photosystems. These responses clearly show the importance of LHCIIb in the structure and assembly of the photosynthetic membrane and illustrate the extreme plasticity at the level of the composition of the light harvesting system.  相似文献   

7.
The light-harvesting complex (LHC) of higher plants isolated using Triton X-100 has been studied during its transformation into a monomeric form known as CPII. The change was accomplished by gradually increasing the concentration of the detergent, sodium dodecyl sulfate (SDS). Changes in the red spectral region of the absorption, circular dichroism (CD), and linear dichroism spectra occurring during this treatment have been observed at room temperature. According to a current hypothesis the main features of the visible region absorption and CD spectra of CPII can be explained reasonably successfully in terms of an exciton coupling among its chlorophyll (Chl) b molecules. We suggest that the spectral differences between the isolated LHC and the CPII may be understood basically in terms of an exciton coupling between the Chl b core of a given CPII unit and at least one of the Chla's of either the same or the adjacent CPII. We propose that this Chl a-Chl b coupling existing in LHC disappears upon segregation into CPII, probably as a result of a detergent-related overall rotation of the strongly coupled Chl b core which changes the relative orientations of the two types of pigments and thus the nature of their coupling.Abbreviations Chl Chlorophyll - CD Circular dichroism - LD Linear dichroism - LHC Light-harvesting complex - SDS Sodium dodecyl sulfate - CPII A solubilized form of LHC obtained with SDS polyacrylamide gel electrophoresis Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement  相似文献   

8.
The centromeric region of a telocentric field bean chromosome that resulted from centric fission of the metacentric satellite chromosome was microdissected. The DNA of this region was amplified and biotinylated by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)/linker-adapter PCR. After fluorescence in situ hybridization (FISH) the entire chromosome complement of Vicia faba was labelled by these probes except for the nucleolus organizing region (NOR) and the interstitial heterochromatin, the chromosomes of V. sativa and V. narbonensis were only slightly labelled by the same probes. Dense uniform labelling was also observed when a probe amplified from a clearly delimited microdissected centromeric region of a mutant of Tradescantia paludosa was hybridized to T. paludosa chromosomes. Even after six cycles of subtractive hybridization between DNA fragments amplified from centromeric and acentric regions no sequences specifically located at the field bean centromeres were found among the remaining DNA. A mouse antiserum was produced which detected nuclear proteins of 33 kDa and 68 kDa; these were predominantly located at V. faba kinetochores during mitotic metaphase. DNA amplified from the chromatin fraction adsorbed by this serum out of the sonicated total mitotic chromatin also did not cause specific labelling of primary constrictions. From these results we conclude: (1) either centromere-specific DNA sequences are not very conserved among higher plants and are — at least in species with large genomes — intermingled with complex dispersed repetitive sequences that prevent the purification of the former, or (2) (some of) the dispersed repeats themselves specify the primary constrictions by stereophysical parameters rather than by their base sequence.  相似文献   

9.
RNA polymerase I was purified from chromatin isolated from auxintreated soybean hypocotyl. Purification was achieved by using Agarose A-1.5m gel filtration, DEAE-cellulose, CM-sephadex, and phosphocellulose chromatography, and sucrose density gradient centrifugation. With denatured calf thymus DNA as template, the enzyme has a high specific activity (200–300 nmol/mg/30 min at 28°C) which is comparable to other RNA polymerase I enzymes purified from animals and yeast. While the gel profiles indicate that purification to homogeneity (greater than 90%) may not have been achieved, the enzyme appears to be composed of possibly 7 subunits, several of which are similar to the subunits of yeast RNA polymerase I. The putative subunits and molar ratios are 183 000 (1), 136 000 (1), 50 000 (0.5), 46 000 (0.5), 40 000 (0.5), 33 000 (0.2), and 28 000 (2). The purified enzyme strongly prefers a completely denatured template such as poly(dC).  相似文献   

10.
11.
RNA polymerase I was purified from chromatin isolated from auxin-treated soybean hypocotyl. Purification was achieved by using Agarose A-1.5m gel filtration, DEAE-cellulose, CM-sephadex, and phosphocellulose chromatography, and sucrose density gradient centrifugation. With denatured calf thymus DNA as template, the enzyme has a high specific activity (200-300 nmol/mg/30 min at 28 degrees C) which is comparable to other RNA polymerase I enzymes purified from animals and yeast. While the gel profiles indicate that purification to homogeneity (greater than 90%) may not have been achieved, the enzyme appears to be composed of possibly 7 subunits, several of which are similar to the subunits of yeast RNA polymerase I. The putative subunits and molar ratios are 183 000 (1), 136 000 (1), 50 000 (0.5), 46 000 (0.5), 40 000 (0.5), 33 000 (0.2), and 28 000 (2). The purified enzyme strongly prefers a completely denatured template such as poly(dC).  相似文献   

12.
Carotenoids in light harvesting complex (LHC) play an important role in preventing plants photodamage caused by excess light. Non-photochemical quenching (NPQ) is an important mechanism adopted by plants to deal with high light intensity and the major component is referred to as energy dependent quenching (qE). Despite numerous studies have been devoted to investigating the site and mechanism of qE, there are still much debate on these topics. In this article, we discussed the possible site and underlying mechanism of qE based on the structural similarity of carotenoids. Moreover, being as good antioxidants, carotenoids’ potential protective effects against LHC photo-oxidation by quenching active oxygen species or triplet excited state chlorophyll are also discussed.  相似文献   

13.
14.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

15.
Photoprotection of the chloroplast is an important component of abiotic stress resistance in plants. Carotenoids have a central role in photoprotection. We review here the recent evidence, derived mainly from in vitro reconstitution of recombinant Lhc proteins with different carotenoids and from carotenoid biosynthesis mutants, for the existence of different mechanisms of photoprotection and regulation based on xanthophyll binding to Lhc proteins into multiple sites and the exchange of chromophores between different Lhc proteins during exposure of plants to high light stress and the operation of the xanthophyll cycle. The use of recombinant Lhc proteins has revealed up to four binding sites in members of Lhc families with distinct selectivity for xanthophyll species which are here hypothesised to have different functions. Site L1 is selective for lutein and is here proposed to be essential for catalysing the protection from singlet oxygen by quenching chlorophyll triplets. Site L2 and N1 are here proposed to act as allosteric sites involved in the regulation of chlorophyll singlet excited states by exchanging ligand during the operation of the xanthophyll cycle. Site V1 of the major antenna complex LHC II is here hypothesised to be a deposit for readily available substrate for violaxanthin de-epoxidase rather than a light harvesting pigment. Moreover, xanthophylls bound to Lhc proteins can be released into the lipid bilayer where they contribute to the scavenging of reactive oxygen species produced in excess light. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Christen G  Steffen R  Renger G 《FEBS letters》2000,475(2):103-106
This study presents the first report on delayed fluorescence (DF) emitted from spinach thylakoids, D1/D2/Cytb-559 preparations and solubilized light harvesting complex II (LHCII) in the ns time domain after excitation with saturating laser flashes. The use of a new commercially available multichannel plate with rapid gating permitted a sufficient suppression of detector distortions due to the strong prompt fluorescence. The following results were obtained: (a) in dark-adapted thylakoids, the DF amplitudes at 100 ns and 5 micros after each flash of a train of saturating actinic pulses exhibit characteristic period four oscillations of opposite sign: the DF amplitudes at 100 ns oscillate in the same manner as the quantum yield of prompt fluorescence, whereas those at 5 micros resemble the oscillation of the micros kinetics of P680(.) reduction in samples with an intact water oxidizing complex, (b) the quantum yield of total DF emission in the range up to a few micros is estimated to be <10(-4) for thylakoids, (c) the DF of D1/D2/Cytb-559 exhibits a monophasic decay with tau approximately 50 ns, (d) DF emission is also observed in isolated LHCII with biphasic decay kinetics characterized by tau values of 65 ns and about 800 ns, (e) in contrast to thylakoids, the amplitudes of DF in D1/D2/Cytb-559 preparations and solubilized LHCII do not exhibit any oscillation pattern and (f) all spectra of DF from the different sample types are characteristic for emission from the lowest excited singlet state of chlorophyll a. The implications of these findings and problems to be addressed in future research are briefly discussed.  相似文献   

17.
Atomic force microscopy (AFM) has developed into a powerful tool to investigate membrane protein surfaces in a close-to-native environment. Here we report on the surface topography of Rhodobacter sphaeroides light harvesting complex 2 (LH2) reconstituted into two-dimensional crystals. These photosynthetic trans-membrane proteins formed cylindrical oligomeric complexes, which inserted tilted into the lipid membrane. This peculiar packing of an integral membrane protein allowed us to determine oligomerization and tilt of the LH2 complexes, but also protrusion height and intrinsic flexibility of their individual subunits. Furthermore the surface contouring reliability and limits of the atomic force microscopy could be studied. The two-dimensional crystals examined had sizes of up to 5 microm and, as revealed by a 10 A cryo electron microscopy projection map, p22(1)2(1) crystal symmetry. The unit cell had dimensions of a = b = 150 A and gamma = 90 degrees, and housed four nonameric complexes, two pointing up and two pointing down. AFM topographs of these 2D crystals had a lateral resolution of 10 A. Further, the high vertical resolution of approximately 1 A, allowed the protrusion height of the cylindrical LH2 complexes over the membrane to be determined. This was maximally 13.1 A on one side and 3.8 A on the other. Interestingly, the protrusion height varied across the LH2 complexes, showing the complexes to be inserted with a 6.2 degree tilt with respect to the membrane plane. A detailed analysis of the individual subunits showed the intrinsic flexibility of the membrane protruding peptide stretches to be equal and independent of their protrusion height. Furthermore, our analysis of membrane proteins within this peculiar packing confirmed the high vertical resolution of the atomic force microscopy on biological samples, and led us to conclude that the image acquisition function was equally accurate for contouring protrusions with heights up to approximately 15 A.  相似文献   

18.
Kargul J  Barber J 《The FEBS journal》2008,275(6):1056-1068
In order to carry out photosynthesis, plants and algae rely on the co-operative interaction of two photosystems: photosystem I and photosystem II. For maximum efficiency, each photosystem should absorb the same amount of light. To achieve this, plants and green algae have a mobile pool of chlorophyll a/b-binding proteins that can switch between being light-harvesting antenna for photosystem I or photosystem II, in order to maintain an optimal excitation balance. This switch, termed state transitions, involves the reversible phosphorylation of the mobile chlorophyll a/b-binding proteins, which is regulated by the redox state of the plastoquinone-mediating electron transfer between photosystem I and photosystem II. In this review, we will present the data supporting the function of redox-dependent phosphorylation of the major and minor chlorophyll a/b-binding proteins by the specific thylakoid-bound kinases (Stt7, STN7, TAKs) providing a molecular switch for the structural remodelling of the light-harvesting complexes during state transitions. We will also overview the latest X-ray crystallographic and electron microscopy-derived models for structural re-arrangement of the light-harvesting antenna during State 1-to-State 2 transition, in which the minor chlorophyll a/b-binding protein, CP29, and the mobile light-harvesting complex II trimer detach from the light-harvesting complex II-photosystem II supercomplex and associate with the photosystem I core in the vicinity of the PsaH/L/O/P domain.  相似文献   

19.
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.  相似文献   

20.
The polypeptide compositions of the light-harvesting chlorophyll a/b-protein complex (LHC) and of the complex of photosystem I (CP I) denatured with 2% beta-mercaptoethanol and 8 M urea was investigated. The LHC complex consists of two major (23 and 21 KD) and two minor (19 and 15 KD) polypeptides; the CP I complex consists of one major (23 KD) and three minor (19, 16 and 14 KD) proteins. The 70 KD protein which was considered to be characteristic for CP I is most likely an oligomer made up of three subunits (23 KD) and other minor protein components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号