共查询到18条相似文献,搜索用时 0 毫秒
1.
The aim of this study was to establish and validate a model for the photosynthetic growth of Chlamydomonas reinhardtii in photobioreactors (PBRs). The proposed model is based on an energetic analysis of the excitation energy transfer in the photosynthesis apparatus (the Z-scheme for photosynthesis). This approach has already been validated in cyanobacteria (Arthorspira platensis) and is extended here to predict the volumetric biomass productivity for the microalga C. reinhardtii in autotrophic conditions, taking into consideration the two metabolic processes taking place in this eukaryotic microorganism, namely photosynthesis and respiration. The kinetic growth model obtained was then coupled to a radiative transfer model (the two-flux model) to determine the local kinetics, and thereby the volumetric biomass productivity, in a torus PBR. The model was found to predict PBR performances accurately for a broad set of operating conditions, including both light-limited and kinetic growth regimes, with a variance of less than 10% between experimental results and simulations. 相似文献
2.
Fouchard S Pruvost J Degrenne B Titica M Legrand J 《Biotechnology and bioengineering》2009,102(1):232-245
Chlamydomonas reinhardtii is a green microalga capable of turning its metabolism towards H2 production under specific conditions. However this H2 production, narrowly linked to the photosynthetic process, results from complex metabolic reactions highly dependent on the environmental conditions of the cells. A kinetic model has been developed to relate culture evolution from standard photosynthetic growth to H2 producing cells. It represents transition in sulfur-deprived conditions, known to lead to H2 production in Chlamydomonas reinhardtii, and the two main processes then induced which are an over-accumulation of intracellular starch and a progressive reduction of PSII activity for anoxia achievement. Because these phenomena are directly linked to the photosynthetic growth, two kinetic models were associated, the first (one) introducing light dependency (Haldane type model associated to a radiative light transfer model), the second (one) making growth a function of available sulfur amount under extracellular and intracellular forms (Droop formulation). The model parameters identification was realized from experimental data obtained with especially designed experiments and a sensitivity analysis of the model to its parameters was also conducted. Model behavior was finally studied showing interdependency between light transfer conditions, photosynthetic growth, sulfate uptake, photosynthetic activity and O2 release, during transition from oxygenic growth to anoxic H2 production conditions. 相似文献
3.
Comparative proteomics of high light stress in the model alga Chlamydomonas reinhardtii 总被引:1,自引:0,他引:1
High light (HL) stress adversely affects growth, productivity and viability of photosynthetic organisms. The green alga Chlamydomonas reinhardtii is a model system to study photosynthesis and light stress. Comparative proteomics of wild-type and two very high light (VHL)-resistant mutants, VHL(R)-S4 and VHL(R)-S9, revealed complex alterations in response to excess light. A two-dimensional reference map of the soluble subproteome was constructed representing about 1500 proteins. A total of 83 proteins from various metabolic pathways were identified by peptide mass fingerprinting. Quantitative comparisons of 444 proteins showed 105 significantly changed proteins between wild type and mutants under different light conditions. Commonly, more proteins were decreased than increased, but different proteins were affected in each genotype. Proteins uniquely altered in either VHL(R) mutant may be involved in VHL resistance. Such candidate proteins similarly altered without light stress, thus possibly contributing to "pre-adaptation" of mutants to VHL, included decreased levels of a DEAD box RNA helicase (VHL(R)-S4) and NAB1 and RB38 proteins (VHL(R)-S9), and increased levels of an oxygen evolving enhancer 1 (OEE1) isoform and an unknown protein (VHL(R)-S4). Changes from increased levels in HL to decreased levels in excess light, included OEE1 (VHL(R)-S9) or the reverse change for NAB1, RB38, beta-carbonic anhydrase and an ABC transporter-like protein (VHL(R)-S4). 相似文献
4.
The removal of chlorinated, nitrated, and sulfonated benzoic acids in cultures of the unicellular green alga, Chlamydomonas reinhardtii 11-32b, was investigated, and the metabolic fate of a model compound, 4-chloro-3,5-dinitrobenzoic acid, was determined. The freshwater alga was able to remove a wide variety of benzoic compounds from the incubation medium. Chlamydomonas discriminated very specifically between the benzoic acids, indicated by the varying degrees of which the test compounds disappeared from the culture medium. Moreover, the alga was capable of transforming 4-chloro-3,5-dinitrobenzoic acid to several metabolites. A release of chloride ions was observed, and 3,5- dinitro-4-hydroxybenzoic acid was identified as a major transient product in the algal metabolism of 4-chloro-3,5-dinitrobenzoic acid. 相似文献
5.
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels. 相似文献
6.
The seasonal and diel dynamics of the physiological state and photosynthetic activity of the snow alga Chlamydomonas nivalis were investigated in a snowfield in Svalbard. The snow surface represents an environment with very high irradiation intensities along with stable low temperatures close to freezing point. Photosynthetic activity was measured using pulse amplitude modulation fluorometry. Three types of cell (green biflagellate vegetative cells, orange spores clustered by means of mucilaginous sheaths, and purple spores with thick cell walls) were found, all of them photosynthetically active. The pH of snow ranged between 5.0 and 7.5, and the conductivity ranged between 5 and 75 microS cm(-1). The temperature of snow was stable (-0.1 to +0.1 degrees C), and the incident radiation values ranged from 11 to 1500 micromol photons m(-2) s(-1). The photosynthetic activity had seasonal and diel dynamics. The Fv/Fm values ranged between 0.4 and 0.7, and generally declined over the course of the season. A dynamic response of Fv/Fm to the irradiance was recorded. According to the saturating photon fluence values Ek, the algae may have obtained saturating light as deep as 3 cm in the snow when there were higher-light conditions, whereas they were undersaturated at prevalent low light even if on the surface. 相似文献
7.
The growth response of Coelastrum proboscideum Bohlin to cadmiun (3 × 10?9M to 2.4 × 10?7M) was studied. The inorganic media used varied in zinc concentration (1.3 × 10?7M to 3.6 × 10?6M). The data were evaluated by factorial analyses. The influence of zine on the growth depression by cadmium depended on the light conditions (16:8 h light:dark cycles or 24 h continuous illumination periods). Intermittent illumination caused a negative interaction of zinc and cadmium in contrast to a positive interaction or additive effects of these elements during continuous illumination. 相似文献
8.
Photosynthesis was characterized for the unicellular green alga Coccomyxa sp., grown at low inorganic carbon (Ci) concentrations, and compared with Chlamydomonas reinhardtii, which had been grown so that the CO2 concentrating mechanism (CCM) was expressed, and with protoplasts isolated from the C3 plant barley (Hordeum vulgare). Chlamydomonas had a significantly higher Ci-use efficiency of photosynthesis, with an initial slope of the Ci-response curve of 0.7 mol(gChl)−1 h−1 mmol Cim−3)−1, as compared to 0.3 and 0.23 mol(gChl)−1 h−1 (mmol Cim−3)−1 for Coccomyxa and barley, respectively. The affinity for Ci was also higher in Chlamydomonas, as the half maximum rate of photosynthesis [K0.5 (Ci)] was reached at 0.18 mol m−3, as compared to 0.30 and 0.45 mol m−3 for Coccomyxa and barley, respectively. Ethoxyzolamide (EZ), an inhibitor of the enzyme carbonic anhydrase (CA) and the CCM, caused a 17-fold decrease in the initial slope of the photosynthetic Cj-response curve in Chlamydomonas, but only a 1.5- to two-fold decrease in Coccomyxa and barley. The photosynthetic light-response curve showed further similarities between barley and Coccomyxa. The rate of bending of the curve, described by the convexity parameter, was 0.99 (sharp bending) and 0.81–0.83 (gradual bending) for cells grown under low and high light, respectively. In contrast, the maximum convexity of Chlamydomonas was 0.85. The intrinsically lower convexity of Chlamydomonas is suggested to result from the diversion of electron transport from carbon fixation to the CCM. Taken together, these results suggest that Coccomyxa does not possess a CCM and due to this apparent lack of a CCM, we propose that Coccomyxa is a better cell model system for studying C3 plant photosynthesis than many algae currently used. 相似文献
9.
B. Degrenne J. Pruvost M. Titica H. Takache J. Legrand 《Biotechnology and bioengineering》2011,108(10):2288-2299
Photosynthetic hydrogen production under light by the green microalga Chlamydomonas reinhardtii was investigated in a torus‐shaped PBR in sulfur‐deprived conditions. Culture conditions, represented by the dry biomass concentration of the inoculum, sulfate concentration, and incident photon flux density (PFD), were optimized based on a previously published model (Fouchard et al., 2009. Biotechnol Bioeng 102:232–245). This allowed a strictly autotrophic production, whereas the sulfur‐deprived protocol is usually applied in photoheterotrophic conditions. Experimental results combined with additional information from kinetic simulations emphasize effects of sulfur deprivation and light attenuation in the PBR in inducing anoxia and hydrogen production. A broad range of PFD was tested (up to 500 µmol photons m−2 s−1). Maximum hydrogen productivities were 1.0 ± 0.2 mL H2/h/L (or 25 ± 5 mL H2/m2 h) and 3.1 mL ± 0.4 H2/h L (or 77.5 ± 10 mL H2/m2 h), at 110 and 500 µmol photons m−2 s−1, respectively. These values approached a maximum specific productivity of approximately 1.9 mL ± 0.4 H2/h/g of biomass dry weight, clearly indicative of a limitation in cell capacity to produce hydrogen. The efficiency of the process and further optimizations are discussed. Biotechnol. Bioeng. 2011;108: 2288–2299. © 2011 Wiley Periodicals, Inc. 相似文献
10.
Tank cultivation of marine macroalgaeinvolves air-agitation of the algal biomassand intermittent light conditions,i.e.periodic, short light exposure of thethalli in the range of 10 s at the watersurface followed by plunging to low lightor darkness at the tank bottom andrecirculation back to the surface in therange of 1–2 min. Open questions relate toeffects of surface irradiance on growthrate and yield in such tumble cultures andthe possibility of chronic photoinhibitionin full sunlight. A specially constructedshallow-depth tank combined with a darktank allowed fast circulation times ofapproximately 5 s, at a density of 4.2 kgfresh weight (FW) m-2s-1. Growthrate and yield of the red alga Palmaria palmata increased over a widerange of irradiances, with no signs ofchronic photoinhibition, up to agrowth-saturating irradiance ofapproximately 1600 mol m-2s-1 in yellowish light supplied by asodium high pressure lamp at 16 h light perday. Maximum growth rate ranged at 12% FWd-1, and maximum yield at 609 gFW m-2 d-1. This shows that highgrowth rates of individual thalli may bereached in a dense tumble culture, if highsurface irradiances and short circulationtimes are supplied. Another aspect ofintermittent light relates to possiblechanges of basic growth kinetics, ascompared to continuous light. For thispurpose on-line measurements of growth ratewere performed with a daily light reductionby 50% in light-dark cycles of 1, 2 or 3min duration during the daily light period.Growth rates at 10 °C and 50 molphoton m-2 s-1 dropped in allthree intermittent light regimes duringboth the main light and dark periods andreached with all three periodicitiesapproximately 50% of the control , with noapparent changes in basic growth kinetics,as compared to continuous light. 相似文献
11.
Changes in the photosynthetic apparatus occurring during the synchronous cell cycle of the green alga Scenedesmus obliquus are compared to the adaptational response induced by light intensity variations. To investigate and compare these two phenomena, we analyze the polyphasic rise of the chlorophyll fluorescence yield exhibited by plants and cyanobacteria when exposed to high intensity actinic light. Four fluorescence parameters are calculated which are closely related to Photosystem II (PS II) structure and function: ABS/RC, the antenna size of PS II; PO, the quantum yield for reduction of the primary PS II quinone acceptor; qPQ, related to the size of the plastoquinone pool; qEmax, the capacity for pH dependent non-photochemical quenching. The capacity for non-photochemical quenching changes in response to light intensity variations, but it is not affected by the developmental changes occurring during the cell cycle. In contras t, for ABS/RC, PO and qPQ, we observe light induced as well as cell cycle dependent variations. We discuss the relations of the four fluorescence parameters to the molecular organization of the photosynthetic apparatus and its cell cycle and light dependent changes. 相似文献
12.
Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance 总被引:7,自引:0,他引:7
1. Growth rates of seven species of planktonic algae were determined in culture over a range of temperature from 2 to 35 °C. Additional observations on growth and viability were made for 13 species in the temperature range 20–35 °C. 2. There was a wide range of growth rates between species at their optimal temperatures, from 1.7 divisions day?1 (Asterionella formosa) to 0.3 divisions day?1 (Ceratium furcoides). 3. There were considerable differences between species for growth at low and high temperature. Certain algae, including the diatom A. formosa and the flagellates Cryptomonas marssonii, Dinobryon divergens and Eudorina unicocca var. unicocca, had growth rates of 0.4 divisions day?1 or more at 5 °C. The cyanophyte Tychonema (formerly Oscillatoria) bourrellyi, the xanthophyte Tribonema sp., the desmid Staurastrum cingulum and the large dinoflagellate C. furcoides grew poorly or not at all at this temperature. All 21 species tested could grow at 25 °C, but many – including most of the diatoms, some cyanophytes, and all the flagellates – failed to grow persistently at 30 °C. Only Aphanizomenon flos‐aquae survived with moderate increase at 35 °C, a lethal temperature for the other species. 4. The applicability was considered of proposed quantitative formulations of the rate‐temperature relationship. Simple exponential relationships applied only to very limited lower ranges of temperature. The relationship proposed by B?lehrádek was a better fit over a wider temperature range, but still excluded rate‐decline at high temperature. 5. The interspecific differences found are of potential significance for restrictions in natural distributions associated with season, altitude (especially above 500 m) and latitude. 相似文献
13.
AIMS: To examine the effect of interactions between water, temperature and gas composition on growth and ochratoxin A (OTA) production by isolates of Penicillium verrucosum in vitro and in situ on grain-based media and wheat grain. METHODS AND RESULTS: Three isolates of P. verrucosum were examined in relation to radial growth rate and OTA production, and to interacting conditions of water activity (a(w)), temperature and gas composition on a milled wheat medium. Subsequently, detailed temporal studies were carried out on gamma irradiated wheat grain over the range 0.75-0.995 a(w), 10-25 degrees C and air, 25 or 50% CO(2). This showed that optimum growth of P. verrucosum was at 0.98 a(w) in vitro at 25 degrees C, but at 0.95 a(w) and 25 degrees C on wheat grain. The a(w) minimum for growth was about 0.80 a(w), although no OTA was produced under this condition even after 56 days. Significant inhibition of growth and OTA production occurred with 50% CO(2), and 0.90-0.995 a(w) at 25 degrees C. CONCLUSIONS: The optimum and marginal conditions for growth and OTA production on wheat grain have been identified. At least 50% CO(2) is needed to inhibit growth and OTA production by >75% in moist grain (0.90-0.995 a(w)). SIGNIFICANCE AND IMPACT OF THE STUDY: First detailed identification of optimal and marginal interacting conditions of water/temperature and gas composition on growth and OTA production by P. verrucosum on wheat grain. This is a critical component of the postharvest management strategy for minimizing contamination by this important mycotoxin and predicting risk, based on environmental conditions, during drying and storage. 相似文献
14.
AIMS: The effect of five essential oils (oregano, cinnamon, lemongrass, clove and palmarose) on growth rate, zearalenone (ZEA) and deoxynivalenol (DON) production by Fusarium graminearum strains was assessed. METHODS AND RESULTS: The influence of the essential oils was tested on irradiated maize at two concentrations (500 and 1000 mg kg-1), at different water activity (aw) (0.95 and 0.995) and temperature (20 and 30 degrees C) levels. At 0.995 aw all essential oils tested had an inhibitory effect on growth rate of F. graminearum at both temperatures studied. At this aw level, DON production in general was inhibited by all essential oils at 30 degrees C and, although palmarose and clove were the only essential oils with statistically significant inhibitory effect on ZEA production, an inhibitory trend was observed when cinnamon and oregano oils were added to maize grain. CONCLUSIONS: Antifungal and antimycotoxigenic activity of the essential oils assayed was shown to depend on environmental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: It is apparent that essential oils should be considered as alternative preharvest natural fungicides. Further investigation on natural maize grain might be useful to study the effectiveness of these essential oils in the presence of natural mycoflora of maize grain. 相似文献
15.
Kensuke Miyamoto Junichi Ueda Satomi Takeda Kazuko Ida Takayuki Hoson Yoshio Masuda Seiichiro Kamisaka 《Physiologia plantarum》1994,92(2):350-355
White fluorescent light (5 W m−2 ) inhibited Avena coleoptile growth. Light caused in increase in minimum stress relaxation time and a decrease in extensibility (strain/load) of coleoptile cell walls. Light increased the contents of ferulic acid (FA) and diferulic acid (DFA) ester-linked to the hemicellulose I in cell walls. These changes in the phenolic contents correlated with those of the mechanical properties of cell walls, suggesting that light stimulates the formation of DFA in hemicellulose I, making cell walls rigid, and thus results in growth inhibition. The ratio of DFA to FA was almost constant in the dark, but decreased in light, although it was almost constant in Oryza coleoptiles either in the dark or in light (Tan et al. 1992). From this fact, it is speculated that in the light condition, the formation of DFA in cell walls is limited in the step of the peroxidase catalyzed coupling reaction to produce DFA, while in the dark it is limited in the step of the feruloylation of hemicellulose I. 相似文献
16.
Cellulase-free xylanase production by T. lanuginosus MH4 was investigated in a 3-litre stirred tank bioreactor under different agitation rates and an aeration rate of 1v/v/m. The cultivation time in the bioreactor was reduced significantly over that in shake culture conditions. A xylanase productivity of 0.1 mkat1–1h–1 was achieved on xylan in the bioreactor. This was nearly double to that obtained in shake culture. The agitation rates influenced both growth and enzyme secretion in the bioreactor. The highest level of biomass concentration and activities of both xylanase and -xylosidase were obtained at 150 revmin–1 相似文献
17.
Joanne H. Heaton Ellen E. Schilling Thomas D. Gelehrter Matthew M. Rechler Carolyn J. Spencer S. Peter Nissley 《Biochimica et Biophysica Acta (BBA)/General Subjects》1980,632(2):192-203
Insulin stimulates a 2-fold increase in the amount of tyrosine aminotransferase and a 5–10-fold increase in the rate of amino acid transport in dexamethasone-treated rat hepatoma cells. In order to determine whether these effects are mediated by insulin receptors or receptors for insulin-like growth factors, we have examined the binding of 125I-labeled insulin and 125I-labeled multiplication-stimulating activity, a prototype insulin-like growth factor, and compared the biological effects of these polypeptides. Insulin and multiplication-stimulating activity cause an identical increase in transaminase activity and transport velocity; half-maximal biological effects were observed at 35 ng/ml (5.5 nM) insulin and 140 ng/ml multiplication-stimulating activity. The hepatoma cells display typical insulin receptors of appropriate specificity; half-maximal displacement of tracer insulin binding occured at 33 ng/ml unlabeled insulin, but only at 2500 ng/ml unlabeled multiplication-stimulating activity. Specific multiplication-stimulating activity receptors also were demonstrated with which insulin did not interact even at 10 μg/ml. Half-maximal displacement of tracer multiplication-stimulating activity occured at 200 ng/ml unlabeled multiplication-stimulating activity. We conclude that insulin cannot act via the multiplication-stimulating activity receptor and presumably acts via typical insulin receptors. The effects of multiplication-stimulating activity on enzyme induction and amino acid transport are probably mediated primarily via the multiplication-stimulating activity receptor. 相似文献
18.
The effects of phosphorus, Zn2+, CO2, and light intensity on growth, biochemical composition, and the activity of extracellular carbonic anhydrase (CA) in Isochrysis galbana were investigated. A significant change was observed when the concentration of phosphorus in the medium was increased from
5 μmol/L to 1000 μmol/L affecting I. galbana’s cell density, biochemical composition, and the activity of extracellular CA. Phosphorous concentration of 50 μmol/L to 500
μmol/L was optimal for this microalgae. The Zn2+ concentration at 10 μmol/L was essential to maintain optimal growth of the cells, but a higher concentration of Zn2+ (≥ 1000 μmol/L) inhibited the growth of I. galbana. High CO2 concentrations (43.75 mL/L) significantly increased the cell densities compared to low CO2 concentrations (0.35 mL/L). However, the activity of extracellular CA decreased significantly with an increasing concentration
of CO2. The activity of extracellular CA at a CO2 concentration of 43.75 mL/L was approximately 1/6 of the activity when the CO2 concentration was at 0.35 mL/L CO2. Light intensity from 4.0 mW/cm2 to 5.6 mW/cm2 was beneficial for the growth, biochemical composition and the activity of extracellular CA. The lower and higher light intensity
was restrictive for growth and changed its biochemical composition and the activity of extracellular CA. These results indicate
that phosphorus, Zn2+, CO2, and light intensity are important factors that impact growth, biochemical composition and the activity of extracellular
CA in I. galbana. 相似文献