首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Beef heart mitochondrial protein factor FB [Higashiyama etal, Biochemistry 14, 4117–4121 (1975)] was purified and its properties were compared with those of coupling factor B. Both proteins stimulated ATP-driven NAD+ reduction in ammonia and EDTA-treated (AE-) submitochondrial particles, but the extent of stimulation (maximum activity of particles) was very low with FB. FB was found to be ineffective in stimulating Pi-ATP exchange in either AE-particles or reconstituted oligomycin-sensitive ATPase vesicles. Furthermore, FB failed to stimulate ATP-driven NAD+ reduction activity of AE-particles in the presence of saturating amounts of dithiothreitol (DTT). DTT alone stimulates the particle activity extensively as reported earlier. Rabbit antiserum to FB did not show a precipitin band with purified Factor B, nor did the antibody inhibit Factor B stimulated activity of the AE-particles. The data suggest that FB and Factor B are two different molecular species with different functions and fail to provide evidence that FB is a coupling factor.  相似文献   

2.
The temperature dependences of the P870+Q?A → P870QA and P870+Q?B → P870QB recombination reactions were measured in reaction centers from Rhodopseudomonas sphaeroides. The data indicate that the P870+Q?B state decays by thermal repopulation of the P870+Q?A state, followed by recombination. ΔG° for the P870+Q?A → P870+Q?B reaction is ?6.89 kJ · mol?1, while ΔH° = ?14.45 kJ · mol?1 and ?TΔS° = + 7.53 kJ · mol?1. The activation ethalpy, H3, for the P870+Q?A Δ P870+Q?B reaction is +56.9 kJ · mol?1, while the activation entropy is near zero. The results permit an estimate of the shape of the potential energy curve for the P870+Q?A → P870+Q?B electron transfer reaction.  相似文献   

3.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

4.
The surface activity and enzymic properties of the factor F1, the catalytic moiety of Streptococcus faecalis H+-ATPase, has been studied at the air-water and phospholipid-water interfaces. F1 does not interact with the monolayer phospholipids, hence its adsorption on a biological membrane must be due mainly to its recognition of proteins of the hydrophobic complex. The dimensions of the F1 molecule at the air-water interface have been estimated. In the presence of Mg2+, base area is S = 1.8 · 104A?2, height h = 27 A?. Bearing in mind the size of a globular subunit, it follows from the measurements that the major F1 subunits should all lie in the same plane. The ATPase activity of F1 at the interface is inversely proportional to the monolayer density. With low density monolayer, the specific ATPase activity is higher at the interface than in the bulk of the solution.Adsorption of F1 at the interface shifts the isoelectric point of the protein, apparently due to changes in its conformation. The findings are discussed relative to the proton-active transport mechanism.  相似文献   

5.
Rates of hemolysis of rabbit erythrocyte suspensions induced by P. parvum (prymnesin) have been measured colorimetrically at 25.5°C and pH 5.5. The data have been treated previously as consecutive first-order rate processes associated with the prolytic and lytic periods from which two specific rate constants have been obtained, k′ and , respectively. These constants have been related to those obtained by a computer-generated fit of the rate data (absorbance At, as a function of time t) with the rate equation Y = D[1 + exp((X ? B)C)] + E. Here Y equals At, X = time, t; D is equal to a spread factor, Ai ? A; C is the slope of the curve at the inflection point; B is the midpoint time value, i.e., the time at which At = D2; E is termed the off-set constant and is equal to A. Of these constants, B is directly related to the length of the prolytic period, and C?1 is directly related to the specific first-order rate constant for hemolysis, kψ.  相似文献   

6.
The formation of chlorophyll triplet states during illumination of Photosystem I reaction center samples depends upon the redox state of P-700, X and ferredoxin Centers A and B. When the reaction centers are in the states P-700+A1XFdBFd?A and P-700 A1XFd?BFd?A prior to illumination, we observe electron paramagnetic resonance (EPR) spectra from a triplet species which has zero-field splitting parameters (|D| and |E|) larger than those of either the chlorophyll a or chlorophyll b monomer triplet, and a polarization which results from population of the triplet spin sublevels by an intersystem crossing mechanism. We interpret this triplet as arising from photoexcited chlorophyll antenna species associated with reaction centers in the states P-700+Fd?A and P-700+X?, respectively, which undergo de-excitation via intersystem crossing. When the reaction centers are in the states P-700A1XFd?BFd?A and P-700A1X?Fd?BFd?A prior to illumination, we observe a triplet EPR signal with a polarization which results from population of the triplet spin sublevels by radical pair recombination, and which has a |D| value similar to that of chlorophyll a monomer. We interpret this triplet (the radical pair-polarized triplet) as arising from 3P-700 which has been populated by the process P-700+A?13P-700A1. We observe both the radical pair-polarized triplet and the chlorophyll antenna triplet when the reaction centers are in the state P-700 A1XFd?BFd?A, presumably because the processes P-700+A?1X → P-700+A1X? and P-700+A?1X3P-700 A1X have similar rate constants when Centers A and B are reduced, i.e., the forward electron transfer time from A?1 to X is apparently much slower in the redox state P-700 A1XFd?BFd?A than it is in state P-700 A1XFdBFdA. The amplitude of the radical pair-polarized triplet EPR signal does not decrease in the presence of a 13.5-G-wide EPR signal centered at g 2.0 which was recorded in the dark prior to triplet measurements in samples previously frozen under intense illumination. This g 2.0 signal, which has been attributed to phototrapped A?1 (Heathcote, P., Timofeev, K.N. and Evans, M.C.W. (1979) FEBS Lett. 101, 105–109), corresponds to as many as 12 spins per P-700 and can be photogenerated during freezing without causing any apparent attenuation of the radical pair-polarized triplet amplitude. We conclude that species other than A?1 contribute to the g 2.0 signal.  相似文献   

7.
The polarized fluorescence from nucleotides bound to myosin heads in glycerinated muscle fibers of rabbit psoas was measured as the number of myosin heads with bound nucleotides was varied by adding various concentrations of fluorescent ?-ATP, ?-ADP and ?-AMPPNP (1:N6-etheno-ATP, -ADP and -imido ATP). The angles of the absorption and emission dipoles of bound nucleotides to the fiber axis and their angular distribution were determined from the observed values of four components of the polarized fluorescence.The maximum amount of nucleotides bound to the myosin heads in the fiber, Bm, was 170 to 270 μm. The dissociation constant of nucleotides, K12, increased in the order ?-ATP, ?-ADP, ?-AMPPNP, and was four to six times larger at a sarcomere length (SL) of 2.1 μm than at 3.7 μm.The polarized fluorescence from bound ?-ADP at SL = 2.1 μm was independent of the amount of bound ?-ADP when it was lower than one-half of Bm, indicating a single helical array of myosin heads having ?-ADP. The angles of the absorption dipole, φA, and the emission dipole, φE, to the fiber axis were 69 ° and 66 °, respectively. As the amount of bound ?-ADP exceeded one-half of Bm, the values of the polarized fluorescence showed that the extra ?-ADP bound to myosin heads with a lower affinity and had different angles to the fiber axis: φA and φE were 49 ° and 54 °, respectively. The half-maximum width of the angular distribution of these bound ?-ADP molecules, θ12, was about 20 °.During development of isometric tension in the presence of ?-ATP with Mg2+, the polarized fluorescence was independent of the amount of bound ?-ATP when it was lower than one-third of Bm or when the concentration of free ?-ATP was lower than 100 μm, indicating a single helical array of myosin heads undergoing the ATPase reaction. The angles of bound nucleotides, φA and φE, were 68 ° and 64 °, respectively. The half-maximum width of the angular distribution, θ12, was about 22 °. As the amount of bound nucleotides exceeded one-third of Bm, the polarized fluorescence showed deviation from the values expected for the single helical array.The angles φA and φE for bound ?-AMPPNP were about 58 ° and 62 °, respectively, but the angular distribution was broad; that is, θ12 was about 42 °. These angles were independent of the amount of bound ?-AMPPNP.In a stretched fiber with SL = 3.7 μm, the polarized fluorescence showed that the angles of ?-ADP, ?-ATP and ?-AMPPNP bound to myosin heads had almost random distributions; θ12 was 90 ° to 100 °, independent of the amount of bound nucleotides. Similar results were obtained with the relaxed fiber in the presence of ?-ATP.  相似文献   

8.
We have determined the nucleotide sequence of a secondary λ attachment site in proAB, a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the proAB site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the proABatt site with other secondary attachment sites to gain insights into the structural features important for λ integration.  相似文献   

9.
This work aims to fully elucidate the effects of a trehalose glassy matrix on electron transfer reactions in cyanobacterial Photosystem I (PS I). Forward and backward electron transfer rates from A1A? and A1B? to FX, and charge recombination rates from A0?, A1B?, A1A?, FX?, and [FA/FB]? to P700+ were measured in P700–FA/FB complexes, P700–FX cores, and P700–A1 cores, both in liquid and in a trehalose glassy matrix at 11% humidity. By comparing CONTIN-resolved kinetic events over 6 orders of time in increasingly simplified versions of PS I at 480?nm, a wavelength that reports primarily A1A?/A1B? oxidation, and over 9 orders of time at 830?nm, a wavelength that reports P700+ reduction and A0? oxidation, assignments could be made for nearly all of the resolved kinetic phases. Trehalose-embedded PS I samples demonstrated partially arrested forward electron transfer. The fractions of complexes in which electron transfer did not proceed beyond A0, A1 and FX were 53%, 16% and 22%, respectively, with only 10% of electrons reaching the terminal FA/FB clusters. The ~10?μs and ~150?μs components in both liquid and trehalose-embedded PS I were assigned to recombination between A1B? and P700+ and between A1A? and P700+, respectively. The kinetics and amplitudes of these resolved kinetic phases in liquid and trehalose-embedded PS I samples could be well-fitted by a kinetic model that allowed us to calculate the asymmetrical contribution of the A1A? and A1B? quinones to the electrochromic signal at 480?nm. Possible reasons for these effects are discussed.  相似文献   

10.
Complexes of the formula cis-[Pt(HN+N)(L)Cl2], where (HN+N) are the protonated diamines including 3-aminoquinuclidine, N-aminopiperidine, piperazine, N-methylpiperazine, 1,1,4-trimethylpiperazine, and N-methyl-1,4-diazabicyclo [2,2,2] octane (N-methyl-dabco) and L = SCN?, NO2?, Br?, and F?, were synthesized from the protonated diamine complexes, [Pt(HN+N)Cl3]. The antitumor activities of the complexes were evaluated in vitro against L1210 murine leukemia cells, and ID50 values for the L-substituted complexes were compared to values of the parent complexes. In each case it was found that replacement of a chloride ion by SCN?, NO2?, Br?, or F?, either reduced or completely eliminated antitumor activity. This effect is explained in terms of the trans-directing ability of the ligand, L, compared to chloride. The NO2-substituted complex of 3- aminoquinuclidine was tested in vivo and found to exhibit little or no antitumor activity.  相似文献   

11.
Hydrophobic anions of dipicrylamine and of sodium tetraphenylborate have been employed as probes of interfacial dipole potential variations in lipid bilayer membranes. Systematic variation of dipole potentials has been achieved by introduction of compounds incorporating N+ and B? charge centers. Distribution of hydrophilic and and hydrophobic groups relative to these charge centers has been shown to control the orientation in the membrane/solution interface of the electric dipole moment formed by these centers. Thus triphenyl-[4-trimethylphenylammonium] borate orients with the B? center, surrounded by phenyl groups, embedded in the membrane, while the smaller methylated N+ center is directed toward the aqueous phases. This orientation has been confirmed using dipicrylamine probe ions. Results obtained in this system have been interpreted quantitatively using a previously developed model incorporating discrete charge effects. A second class of compounds, tri-n-alkylamine borane (TnAB) complexes having the generic formula (CnH2n+1)3N+B?H3, have also been synthesized for this study, using even-carbon alkyls ranging from ethyl to decyl. Molecular orientation of the complex is with the N+ center and its associated alkyl groups directed into the membranes, while the protonated B? center is directed toward the aqueous phases, as confirmed by use of tetraphenylborate ions as probes.  相似文献   

12.
The effect of Mg2+ concentration and phosphorylation of light-harvesting chlorophyll ab-protein on various chlorophyll fluorescence induction parameters of isolated pea thylakoids has been studied. (1) Lowering the Mg2+ concentration from 3 to 0.4 mM decreases only the variable fluorescence (Fv) and the area above the induction curve while at the same time increasing the slow exponential component of the rise (βmax). (2) A further decrease in Mg2+ concentration from 0.4 to 0 mM decreases the initial (F0) fluorescence level such that the ratio FvFm increases slightly as does the area above the induction curve and βmax. (3) Thylakoid membranes, phosphorylated at 5 mM Mg2+, show an equal decrease in Fv and F0, no change in the area above the induction curve and an increase in βmax. At 2 mM Mg2+, however, phosphorylation induced a more extensive quenching of Fv so that the FvFm ratio was lowered and the area above the induction curve decreased while βmax increased. (4) When phosphorylated membranes were subsequently suspended in an Mg2+-free medium the effect on F0 due to phosphorylation was found to be additive to that due to the absence of Mg2+. The effect of membrane phosphorylation on fluorescence is discussed in relation to the control of excitation energy distribution and shows that different mechanisms operate depending on the background Mg2+ levels. At high Mg2+ the phosphorylation seems to affect the absorption cross-section of Photosystem II while at lower Mg2+ levels there is an additional effect of increased spillover from Photosystem II to I.  相似文献   

13.
Crystals of plastocyanins from pea and corn leaves have been obtained. Both are suitable for X-ray structure analysis with a resolution up to 1.8 Å. The crystal form of plastocyanin from pea leaves belongs to the space group P212121 with unit cell dimensions: a = 49.0 A?, b = 53.3 A?, c = 82.6 A?. The assumed number of protein molecules per asymmetric unit of the unit cell is two. Crystals of the oxidized (Cu2+) and reduced (Cu+) forms are isomorphic. No essential differences in spot intensities for the main zone with a resolution of 3 Å were revealed. The crystal form of plastocyanin from corn leaves belongs to the space group P1 with unit cell parameters: a = 24.8 A?, b = 30.0 A?, c = 58.5 A? and α = 96° 10′, β = 87°08′, γ = 78°40′. The assumed number of protein molecules per asymmetric unit is two.  相似文献   

14.
Flash-induced absorption changes of Triton-solubilized Photosystem I particles from spinach were studied under reducing and/or illumination conditions that serve to alter the state of bound electron acceptors. By monitoring the decay of P-700 following each of a train of flashes, we found that P-430 or components resembling it can hold 2 equivalents of electrons transferred upon successive illuminations. This requires the presence of a good electron donor, reduced phenazine methosulfate or neutral red, otherwise the back reaction of P-700+ with P-430 occurs in about 30 ms. If the two P-430 sites, designated Centers A and B, are first reduced by preilluminating flashes or chemically by dithionite under anaerobic conditions, then subsequent laser flashes generate a 250 μs back reaction of P-700+, which we associate with a more primary electron acceptor A2. In turn, when A2 is reduced by background (continuous) illumination in presence of neutral red and under strongly reducing conditions, laser flashes then produce a much faster (3 μs) back reaction at wavelengths characteristic of P-700. We associate this with another more primary electron acceptor, A1, which functions very close to P-700. The organization of these components probably corresponds to the sequence P-700-A1-A2-P-430[AB]. The relation of the optical components to acceptor species detected by EPR, by electron-spin polarization or in terms of peptide components of Photosystem I is discussed.Preliminary experiments with broken chloroplasts suggest that an analogous situation occurs there, as well.  相似文献   

15.
A maximal rate of the ouabain-sensitive 204Tl influx in human erythrocytes can be attained at trace concentrations of Tl+ in Mg2+ isotonic media free of K+ and Na+. The maximal influx of Tl+ from isotonic Mg(NO3)2 at 20°C and pH 7.4 was 0.45 mM · 1?1 · h?1 with a Km of 0.025 mM. In contrast to the active influx of Tl+, the passive Tl+ fluxes were neither saturated nor influenced by external cations in the range of concentrations of Tl+ and K+ studied. The rate constants of Tl+ passive fluxes in human and cat erythrocytes can be related to pH by the equation log kin(out) = –A + B · pH, where A and B are empirical constants for particular conditions. The apparent activation energy was 16 and 11 kcal/mol in sulphate and nitrate media, respectively. Tl+ and the alkali metal cations seem to overcome a common barrier in the erythrocyte membrane. Nevertheless, the rate of the passive penetration of Tl+ is about two orders of magnitude faster than those of K+ or Rb+. An extra non-Coulombic interaction between Tl+ and membrane ligands appears to be involved providing an accumulation of Tl+ somewhere in the vicinity of the membrane barrier and increasing the diffusion fluxes of Tl+ in both directions.  相似文献   

16.
The effects of absolute temperature (T), ionic strength (μ), and pH on the polymerization of tobacco mosaic virus protein from the 4 S form (A) to the 20 S form (D) were investigated by the method of sedimentation velocity. The loading concentration in grams per liter (C) was determined at which a just-detectable concentration (β) of 20 S material appeared. It was demonstrated experimentally that under the conditions employed herein, an equilibrium concentration of 20 S material was achieved in 3 h at the temperature of the experiment and that 20 S material dissociated again in 4 h or less to 4 S material either upon lowering the temperature or upon dilution. Thus, the use of thermodynamic equations for equilibrium processes was shown to be valid. The equation used to interpret the results, log (C?β) = constant + (ΔH12.3RT) + (ΔW1el2.3RT) ? K′ + ζpH, was derived from three separate models of the process, the only difference being in the anatomy of the constant; thus, the method of analysis is essentially independent of the model. ΔH1 and ΔW1el are the enthalpy and the change in electrical work per mole of A protein (the trimer of the polypeptide chain), Ks is the salting-out constant on the ionic strength basis, ζ is the number of moles of hydrogen ion bound per mole of A protein in the polymerization, and R is the gas constant. The three models leading to this equation are: a simple 11th-order equilibrium between A1 (the trimer of the polypeptide chain) and D, either the double disk or the double spiral of approximately the same molecular weight, designated model A; a second model, designated B, in which A1 was assumed to be in equilibrium with D at the same time that it is in equilibrium with A2, A3, etc., dimers and trimers, etc., of A1 in an isodesmic system; and a phase-separation model, designated model C, in which A protein is treated as a soluble material in equilibrium with D, considered as an insoluble phase. From electrical work theory, ΔWel1/T was shown to be essentially independent of T; therefore, in experiments at constant μ and constant pH the equation of log (C ? β) versus 1/T is linear with a slope of ΔH1/2.3R. The results fit such an equation over nearly a 20 °C-temperature range with a single value of ΔH1 of +32 kcal/mol A1. Results obtained when T and pH were held constant but μ was varied did not fit a straight line, which shows that more than simple salting-out is involved. When the effect of ionic strength on the electrical work contribution was considered in addition to salting-out, the data were interpreted to indicate a value of ΔW1el of 1.22 kcal/mol A1 at pH 6.7 and a value of 4.93 for Ks. When μ and T were held constant but pH was varied, and when allowance was made for the effect of pH changes on the electrical work contribution, a value of 1.1 was found for ζ. This means that something like 1.1 mol of hydrogen ion must be bound per mole of A1 protein in the formation of D. When this is added to the small amount of hydrogen ion bound per A1 before polymerization, at the pH values used, it turned out that for D to be formed, 1.5 H+ ions must be bound per A1 or 0.5 per protein polypeptide chain. This amounts to 1 H+ ion per polypeptide chain for half of the protein units, presumably those in one but not the other layer of the double disk or turn of the double spiral. When polymerization goes beyond the D stage, as shown by previously published data, additional H+ ions are bound. Simultaneous osmotic pressure studies and sedimentation studies were carried out, in both cases as a function of loading concentration C. These results were in complete disagreement with models A and C but agreed reasonably well with model B. The sedimentation studies permitted evaluation of the constant, β, to be 0.33 g/liter.  相似文献   

17.
18.
J.A. Van Best  L.N.M. Duysens 《BBA》1975,408(2):154-163
The kinetics of the fluorescence yield Ф of chlorophyll a in Chlorella pyrenoidosa were studied under anaerobic conditions in the time range from 50 μs to several minutes after short (t12 = 30 ns or 5 μs) saturating flashes. The fluorescence yield “in the dark” increased from Ф = 1 at the beginning to Ф ≈ 5 in about 3 h when single flashes separated by dark intervals of about 3 min were given.After one saturating flash, Ф increased to a maximum value (4–5) at 50 μs, then Ф decreased to about 3 with a half time of about 10 ms and to the initial value with a half time of about 2 s. When two flashes separated by 0.2 s were given, the first phase of the decrease after the second flash occurred within 2 ms. After one flash given at high initial fluorescence yield, the 10-ms decay was followed by a 10 s increase to the initial value. After the two flashes 0.2 s apart, the rapid decay was not follewed by a slow increase.These and other experiments provided additional evidence for and extend an earlier hypothesis concerning the acceptor complex of Photosystem II (Bouges-Bocquet, B. (1973) Biochim. Biophys. Acta 314, 250–256; Velthuys, B. R. and Amesz, J. (1974) Biochim. Biophys. Acta 333, 85–94): reaction center 2 contains an acceptor complex QR consisting of an electron-transferring primary acceptor molecule Q, and a secondary electron acceptor R, which can accept two electrons in succession, but transfers two electrons simultaneously to a molecule of the tertiary acceptor pool, containing plastoquinone (A). Furthermore, the kinetics indicate that 2 reactions centers of System I, excited by a short flash, cooperate directly or indirectly in oxidizing a plastohydroquinone molecule (A2?). If initially all components between photoreaction 1 and 2 are in the reduced state the following sequence of reactions occurs after a flash has oxidised A2? via System I: Q?R2? + A → Q?R + A2? → QR? + A2?. During anaerobiosis two slow reactions manifest themselves: the reduction of R (and A) within 1 s, presumably by an endogenous electron donor D1, and the reduction of Q in about 10 s when R is in the state R? and A in the state A2?. An endogenous electron donor, D2, and Q? compete in reducing the photooxidized donor complex of System II in reactions with half times of the order of 1 s.  相似文献   

19.
20.
The crystal and molecular structure of l-pyroglutamyl-β-(2-thienyl)-l-alanyl-l-prolinamide, < Glu-Thi-Pro-NH2(Thi2-TRH), C17H22N4O4S, has been determined from X-ray diffraction data. Thi2-TRH is a highly active analogue of thyroliberin, a thyrotropin-releasing hormone (TRH), in which the imidazole ring of the central histidine moiety in the natural hormone has been replaced by a 2-thienyl group. Thi2-TRH crystallizes from water in the monoclinic space group P21, a = 9.340(1) A?, b = 21.961(3) A?, c = 9.449(1) A? and β = 109.58(1) °, with two molecules per asymmetric unit. These independent molecules, A and B, have the same general backbone conformation with the φ2, ψ2 and ψ3 torsional angles close to ?90 °, +120 ° and +150 °, respectively, but they show different magnitudes of rotational disorder in the thiophene ring as well as a certain disorder in the pyrrolidine ring. A and B are cross-linked by four interchain hydrogen bonds, forming a two-stranded antiparallel β-pleated sheet structure. The molecules in these dimer fragments are further hydrogen-bonded to successive translated molecules along the a and c axes, forming a pronounced two-dimensional predominantly hydrophobic layer structure. These layers, in which the atoms are almost equally arranged on both sides, are separated by ordinary van der Waals' distances. A close correlation between the molecular conformation in the solid state and the preferential conformation in solution is found. It is concluded that the crystalline structure of Thi2-TRH possesses structural features which may be of relevance in the hormone-receptor interaction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号