首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Salmonella enterica, ThiI is a bifunctional enzyme required for the synthesis of both the 4-thiouridine modification in tRNA and the thiazole moiety of thiamine. In 4-thiouridine biosynthesis, ThiI adenylates the tRNA uridine and transfers sulfur from a persulfide formed on the protein. The role of ThiI in thiazole synthesis is not yet well understood. Mutational analysis described here found that ThiI residues required for 4-thiouridine synthesis were not involved in thiazole biosynthesis. The data further showed that the C-terminal rhodanese domain of ThiI was sufficient for thiazole synthesis in vivo. Together, these data support the conclusion that sulfur mobilization in thiazole synthesis is mechanistically distinct from that in 4-thiouridine synthesis and suggest that functional annotation of ThiI in genome sequences should be readdressed. Nutritional studies described here identified an additional cysteine-dependent mechanism for sulfur mobilization to thiazole that did not require ThiI, IscS, SufS, or glutathione. The latter mechanism may provide insights into the chemistry used for sulfur mobilization to thiazole in organisms that do not utilize ThiI.  相似文献   

2.
ThiI has been identified as an essential enzyme involved in the biosynthesis of thiamine and the tRNA thionucleoside modification, 4-thiouridine. In Escherichia coli and Salmonella enterica, ThiI acts as a sulfurtransferase, receiving the sulfur donated from the cysteine desulfurase IscS and transferring it to the target molecule or additional sulfur carrier proteins. However, in Bacillus subtilis and most species from the Firmicutes phylum, ThiI lacks the rhodanese domain that contains the site responsible for the sulfurtransferase activity. The lack of the gene encoding for a canonical IscS cysteine desulfurase and the presence of a short sequence of ThiI in these bacteria pointed to mechanistic differences involving sulfur trafficking reactions in both biosynthetic pathways. Here, we have carried out functional analysis of B. subtilis thiI and the adjacent gene, nifZ, encoding for a cysteine desulfurase. Gene inactivation experiments in B. subtilis indicate the requirement of ThiI and NifZ for the biosynthesis of 4-thiouridine, but not thiamine. In vitro synthesis of 4-thiouridine by ThiI and NifZ, along with labeling experiments, suggests the occurrence of an alternate transient site for sulfur transfer, thus obviating the need for a rhodanese domain. In vivo complementation studies in E. coli IscS- or ThiI-deficient strains provide further support for specific interactions between NifZ and ThiI. These results are compatible with the proposal that B. subtilis NifZ and ThiI utilize mechanistically distinct and mutually specific sulfur transfer reactions.  相似文献   

3.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

4.
The enzyme ThiI is common to the biosynthetic pathways leading to both thiamin and 4-thiouridine in tRNA. We earlier noted the presence of a motif shared with sulfurtransferases, and we reported that the cysteine residue (Cys-456 of Escherichia coli ThiI) found in this motif is essential for activity (Palenchar, P. M., Buck, C. J., Cheng, H., Larson, T. J., and Mueller, E. G. (2000) J. Biol. Chem. 275, 8283-8286). In light of that finding and the report of the involvement of the protein IscS in the reaction (Kambampati, R., and Lauhon, C. T. (1999) Biochemistry 38, 16561-16568), we proposed two mechanisms for the sulfur transfer mediated by ThiI, and both suggested possible involvement of the thiol group of another cysteine residue in ThiI. We have now substituted each of the cysteine residues with alanine and characterized the effect on activity in vivo and in vitro. Cys-108 and Cys-202 were converted to alanine with no significant effect on ThiI activity, and C207A ThiI was only mildly impaired. Substitution of Cys-344, the only cysteine residue conserved among all sequenced ThiI, resulted in the loss of function in vivo and a 2700-fold reduction in activity measured in vitro. We also examined the possibility that ThiI contains an iron-sulfur cluster or disulfide bonds in the resting state, and we found no evidence to support the presence of either species. We propose that Cys-344 forms a disulfide bond with Cys-456 during turnover, and we present evidence that a disulfide bond can form between these two residues in native ThiI and that disulfide bonds do form in ThiI during turnover. We also discuss the relevance of these findings to the biosynthesis of thiamin and iron-sulfur clusters.  相似文献   

5.
The bacterial enzyme sulfane sulfurtransferase has been studied using spectroscopic techniques. The enzyme was characterized in terms of its near-UV absorption spectrum, molar ellipticity, intrinsic fluorescence spectra and the effects of general and ionic quenching reagents upon its fluorescence. Fluorescence model studies are consistent with sulfane sulfurtransferase having only a single tryptophan residue, which accounts for its low UV absorption coefficient and suggested that this residue is at least partially exposed to solvent. Second derivative absorption spectroscopy studies revealed that most of the bacterial enzyme's tyrosine residues are exposed to solvent. Unlike the better known sulfurtransferase, bovine liver rhodanese, sulfane sulfurtransferase does not undergo a detectable increase in quantum yield when shifting from the sulfur-containing covalent enzyme intermediate to the free enzyme form (which lacks sulfur) during catalysis. CD studies suggest that sulfane sulfurtransferase has a significantly higher proportion of alpha-helix than rhodanese. The renaturation of sulfane sulfurtransferase denatured in 6 M guanidine was shown to be rapid and complete provided that the enzyme had not been oxidized while in the denatured state. Sulfane sulfurtransferase, like rhodanese, catalyzes the transfer of sulfur from thiosulfate to cyanide via a persulfide intermediate, and displays remarkably similar kinetics in this process (Aird, B.A., Heinrikson, R.L. and Westley, J. (1987) J. Biol. Chem 262, 17327-17335). In light of this, the results of the structural studies with sulfane sulfurtransferase are compared and contrasted to data from similar experiments with rhodanese in hopes that they would provide insight about which phenomena observed with rhodanese are intrinsic to the process of transferring sulfur atoms.  相似文献   

6.
Escherichia coli has eight genes predicted to encode sulfurtransferases having the active site consensus sequence Cys-Xaa-Xaa-Gly. One of these genes, ybbB, is frequently found within bacterial operons that contain selD, the selenophosphate synthetase gene, suggesting a role in selenium metabolism. We show that ybbB is required in vivo for the specific substitution of selenium for sulfur in 2-thiouridine residues in E. coli tRNA. This modified tRNA nucleoside, 5-methylaminomethyl-2-selenouridine (mnm(5)se(2)U), is located at the wobble position of the anticodons of tRNA(Lys), tRNA(Glu), and tRNA(1)(Gln). Nucleoside analysis of tRNAs from wild-type and ybbB mutant strains revealed that production of mnm(5)se(2)U is lost in the ybbB mutant but that 5-methylaminomethyl-2-thiouridine, the mnm(5)se(2)U precursor, is unaffected by deletion of ybbB. Thus, ybbB is not required for the initial sulfurtransferase reaction but rather encodes a 2-selenouridine synthase that replaces a sulfur atom in 2-thiouridine in tRNA with selenium. Purified 2-selenouridine synthase containing a C-terminal His(6) tag exhibited spectral properties consistent with tRNA bound to the enzyme. In vitro mnm(5)se(2)U synthesis is shown to be dependent on 2-selenouridine synthase, SePO(3), and tRNA. Finally, we demonstrate that the conserved Cys(97) (but not Cys(96)) in the rhodanese sequence motif Cys(96)-Cys(97)-Xaa-Xaa-Gly is required for 2-selenouridine synthase in vivo activity. These data are consistent with the ybbB gene encoding a tRNA 2-selenouridine synthase and identifies a new role for the rhodanese homology domain in enzymes.  相似文献   

7.
8.
Thiamine pyrophosphate is a required coenzyme that contains a mechanistically important sulfur atom. In Salmonella enterica, sulfur is trafficked to both thiamine biosynthesis and 4-thiouridine biosynthesis by the enzyme ThiI using persulfide (R-S-S-H) chemistry. It was previously reported that a thiI mutant strain could grow independent of exogenous thiamine in the presence of cysteine, suggesting there was a second mechanism for sulfur mobilization. Data reported here show that oxidation products of cysteine rescue the growth of a thiI mutant strain by a mechanism that requires the transporter YdjN and the cysteine desulfhydrase CdsH. The data are consistent with a model in which sulfide produced by CdsH reacts with cystine (Cys-S-S-Cys), S-sulfocysteine (Cys-S-SO3), or another disulfide to form a small-molecule persulfide (R-S-S-H). We suggest that this persulfide replaced ThiI by donating sulfur to the thiamine sulfur carrier protein ThiS. This model describes a potential mechanism used for sulfur trafficking in organisms that lack ThiI but are capable of thiamine biosynthesis.  相似文献   

9.
Pagani S  Forlani F  Carpen A  Bordo D  Colnaghi R 《FEBS letters》2000,472(2-3):307-311
Azotobacter vinelandii RhdA uses thiosulfate as the only sulfur donor in vitro, and this apparent selectivity seems to be a unique property among the characterized sulfurtransferases. To investigate the basis of substrate recognition in RhdA, we replaced Thr-232 with either Ala or Lys. Thr-232 was the target of this study since the corresponding Lys-249 in bovine rhodanese has been identified as necessary for catalytic sulfur transfer, and replacement of Lys-249 with Ala fully inactivates bovine rhodanese. Both T232K and T232A mutants of RhdA showed significant increase in thiosulfate-cyanide sulfurtransferase activity, and no detectable activity in the presence of 3-mercaptopyruvate as the sulfur donor substrate. Fluorescence measurements showed that wild-type and mutant RhdAs were overexpressed in the persulfurated form, thus conferring to this enzyme the potential of a persulfide sulfur donor compound. RhdA contains a unique sequence stretch around the catalytic cysteine, and the data here presented suggest a possible divergent physiological function of A. vinelandii sulfurtransferase.  相似文献   

10.
The gene thiI encodes a protein (ThiI) that plays a role in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine, but the reaction catalyzed by ThiI remains undetermined. Based upon sequence alignments, ThiI shares a unique "P-loop" motif with the PPi synthetase family, four enzymes that catalyze adenylation and subsequent substitution of carbonyl oxygens. To test whether or not this motif is critical for ThiI function, the Asp in the motif was converted to Ala (D189A), and a screen for in vivo 4-thiouridine production revealed the altered enzyme to be inactive. Further scrutiny of sequence data and the crystal structures of two members of the PPi synthetase family implicated Lys321 in the proposed adenylation function of ThiI, and the critical nature of Lys321 has been demonstrated by site-directed mutagenesis and genetic screening. Our results, then, indicate that ThiI catalyzes the adenylation of a substrate at the expense of ATP, a narrowing of possible reactions that provides a strong new basis for deducing the early steps in the transfer of sulfur from cysteine to both thiamin and 4-thiouridine.  相似文献   

11.
The intrinsic fluorescence of the enzyme rhodanese is quenched by as much as 30% when sulfur is transferred to the free enzyme form, E, giving the sulfur-substituted enzyme, ES. This fluorescence change (lambda ex = 295 nm and lambda em = 335 nm) has been used to quantitate the E and ES forms which are isolatable, obligatory intermediates in rhodanese catalysis. Fluorescence titration was performed using cyanide to irreversibly remove sulfur from ES. The results show a stoichiometry corresponding to 1 bound sulfur/molecule of the ES form of rhodanese (Mr = 33,000). The fluorescence changes were used to measure the concentrations of E and ES when these were in reversible equilibria induced by interactions with the substrates S2O3(2-) and SO3(2-). These results were compared with an equilibrium constant derived from published kinetic studies for the reaction (formula; see text) The very close agreement between the physical and kinetic methods indicate that there are no significant concentrations of intermediates other than E and ES. Overall, the results are compatible with the formation of a persulfide intermediate in rhodanese catalysis and are consistent with conclusions from x-ray crystallography and absorption spectroscopy. In addition, these procedures offer a facile method to measure equilibria between catalytic intermediates in the rhodanese reaction using functionally relevant concentrations.  相似文献   

12.
4-Thiouridine (s4U) is a conserved modified nucleotide at position 8 of bacterial and archaeal tRNAs and plays a role in protecting cells from near-UV killing. Escherichia coli employs the following two enzymes for its synthesis: the cysteine desulfurase IscS, which forms a Cys persulfide enzyme adduct from free Cys; and ThiI, which adenylates U8 and transfers sulfur from IscS to form s4U. The C-terminal rhodanese-like domain (RLD) of ThiI is responsible for the sulfurtransferase activity. The mechanism of s4U biosynthesis in archaea is not known as many archaea lack cysteine desulfurase and an RLD of the putative ThiI. Using the methanogenic archaeon Methanococcus maripaludis, we show that deletion of ThiI (MMP1354) abolished the biosynthesis of s4U but not of thiamine. MMP1354 complements an Escherichia coli ΔthiI mutant for s4U formation, indicating that MMP1354 is sufficient for sulfur incorporation into s4U. In the absence of an RLD, MMP1354 uses Cys265 and Cys268 located in the PP-loop pyrophosphatase domain to generate persulfide and disulfide intermediates for sulfur transfer. In vitro assays suggest that S2− is a physiologically relevant sulfur donor for s4U formation catalyzed by MMP1354 (Km for Na2S is ∼1 mm). Thus, methanogenic archaea developed a strategy for sulfur incorporation into s4U that differs from bacteria; this may be an adaptation to life in sulfide-rich environments.  相似文献   

13.
A major catalytic difference between the two most common isoforms of bovine liver mitochondrial rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1) has been observed. Both isoforms were shown to be capable of using reduced thioredoxin as a sulfur-acceptor substrate. However, only the less negative form in common with the recombinant mammalian rhodanese expressed in E. coli, can also catalyze the direct oxidation of reduced thioredoxin evidently by reactive oxygen species. These activities are understood in terms of the established persulfide structure (R-S-SH) of the covalently substituted rhodanese in the sulfurtransferase reaction and an analogous sulfenic acid structure (R-S-OH) when the enzyme acts as a thioredoxin oxidase. The observations suggest a role for one rhodanese isoform in the detoxication of intramitochondrial oxygen free radicals.  相似文献   

14.
THiocystine (bis-[2-amino-2-carboxyethyl]trisulfide) is a natural substrate for rhodanese (thiosulfate:cyanide sulfurtransferase, EC 2.8.1.1). Analogs of thiocystine were prepared by eliminating the carboxyl or amino group or by lengthening the carbon chain. Of these only homothiocystine (bis-[2-amino-2-carboxypropyl]trisulfide) had appreciable activity as a substrate. At pH 8.6, the optimum for rhodanese, transfer of sulfane sulfur to cyanide in the presence of rhodanese was nonspecific. Only the sulfane sulfur of 35S-labeled thiocystine was transferred to rhodanese. Thus, thiocystine and thiosulfate both produce a rhodanese persulfide as a stable intermediate in sulfur transfer.  相似文献   

15.
Rhodanese is an ubiquitous enzyme that in vitro catalyses the transfer of a sulfur atom from suitable donors to nucleophilic acceptors by way of a double displacement mechanism. During the catalytic process the enzyme cycles between a sulfur-free and a persulfide-containing form, via formation of a persulfide linkage to a catalytic Cys residue. In the nitrogen-fixing bacteria Azotobacter vinelandii the rhdA gene has been identified and the encoded protein functionally characterized as a rhodanese. The crystal structure of the A. vinelandii rhodanese has been determined and refined at 1.8 A resolution in the sulfur-free and persulfide-containing forms. Conservation of the overall three-dimensional fold of bovine rhodanese is observed, with substantial modifications of the protein structure in the proximity of the catalytic residue Cys230. Remarkably, the native enzyme is found as the Cys230-persulfide form; in the sulfur-free state the catalytic Cys residue adopts two alternate conformations, reflected by perturbation of the neighboring active-site residues, which is associated with a partly reversible loss of thiosulfate:cyanide sulfurtransferase activity. The catalytic mechanism of A. vinelandii rhodanese relies primarily on the main-chain conformation of the 230 to 235 active-site loop and on a surrounding strong positive electrostatic field. Substrate recognition is based on residues which are entirely different in the prokaryotic and eukaryotic enzymes. The active-site loop of A. vinelandii rhodanese displays striking structural similarity to the active-site loop of the similarly folded catalytic domain of dual specific phosphatase Cdc25, suggesting a common evolutionary origin of the two enzyme families.  相似文献   

16.
17.
18.
Active site reactivity and specificity of RhdA, a thiosulfate:cyanide sulfurtransferase (rhodanese) from Azotobacter vinelandii, have been investigated through ligand binding, site-directed mutagenesis, and X-ray crystallographic techniques, in a combined approach. In native RhdA the active site Cys230 is found persulfurated; fluorescence and sulfurtransferase activity measurements show that phosphate anions interact with Cys230 persulfide sulfur atom and modulate activity. Crystallographic analyses confirm that phosphate and hypophosphite anions react with native RhdA, removing the persulfide sulfur atom from the active site pocket. Considering that RhdA and the catalytic subunit of Cdc25 phosphatases share a common three-dimensional fold as well as active site Cys (catalytic) and Arg residues, two RhdA mutants carrying a single amino acid insertion at the active site loop were designed and their phosphatase activity tested. The crystallographic and functional results reported here show that specific sulfurtransferase or phosphatase activities are strictly related to precise tailoring of the catalytic loop structure in RhdA and Cdc25 phosphatase, respectively.  相似文献   

19.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

20.
ThiI is an enzyme responsible for the formation of the modified base S(4)U (4-thiouridine) found at position 8 in some prokaryotic tRNAs. This base acts as a sensitive trigger for the response mechanism to UV exposure, providing protection against its damaging effects. We present the crystal structure of Bacillus anthracis ThiI in complex with AMP, revealing an extended tripartite architecture in which an N-terminal ferredoxin-like domain (NFLD) connects the C-terminal catalytic PP-loop pyrophosphatase domain with a THUMP domain, an ancient predicted RNA-binding domain that is widespread in all kingdoms of life. We describe the structure of the THUMP domain, which appears to be unrelated to RNA-binding domains of known structure. Mapping the conserved residues of NFLD and the THUMP domain onto the ThiI structure suggests that these domains jointly form the tRNA-binding surface. The inaccessibility of U8 in the canonical L-shaped form of tRNA, and the existence of a glycine-rich linker joining the catalytic and RNA-binding moieties of ThiI suggest that structural changes may occur in both molecules upon binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号