首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
在伤信号传导中茉莉酸与水杨酸的关系   总被引:3,自引:0,他引:3  
刘新  张蜀秋 《植物学报》2000,17(2):133-136
近年来,发现茉莉酸和水杨酸都是植物体对外界伤害作出反应,表达抗性基因的信号分子。水杨酸可抑制茉莉酸类的合成及其所诱导的蛋白基因的表达;茉莉酸能阻止病原侵染后所产生的水杨酸的增加。茉莉酸信号转导途径和水杨酸信号转导途径存在着交叉,小GTP结合蛋白和细胞分裂素可能起着信号开关的作用。  相似文献   

2.
茉莉酸及其信号传导研究进展   总被引:8,自引:3,他引:8       下载免费PDF全文
朱家红  彭世清 《西北植物学报》2006,26(10):2166-2172
茉莉酸及其衍生物茉莉酸甲酯等统称为茉莉酸盐,是广泛存在于植物中的一种生长调节物质,在植物细胞中起着非常重要的作用.茉莉酸作为信号分子广泛参与调节植物的生长发育和胁迫响应过程.本文主要就茉莉酸的生物合成、茉莉酸的信号传导途径和调控机制、茉莉酸的信号传导途径与乙烯、脱落酸、水杨酸和一氧化氮信号传导途径的相互关系进行了综述.  相似文献   

3.
乙烯、水杨酸和茉莉酸是植物体内主要的几个防御信号途径,也是研究比较多的几个信号途径。很多试验证明不同的防御信号途径相互间存在相互作用,他们或相互抑制,或相互促进。从这三种信号途径相互间的作用,及作用的联系点进行综述。  相似文献   

4.
系统素、茉莉酸在番茄系统伤反应中的作用   总被引:2,自引:0,他引:2       下载免费PDF全文
当植物受到机械损伤或昆虫伤害时,植物体会在受伤部位产生伤信号分子启动防御基因的系统表达,蛋白酶抑制剂基因是防御基因的一典型代表.番茄是研究植物系统伤信号很好的模式植物,目前,三种类型的番茄系统伤信号突变体被鉴定出来,通过对番茄系统伤信号突变体进行功能分析并在它们之间进行相互嫁接实验,研究结果表明系统素和茉莉酸通过同一信号通路来激活防御基因的系统表达.系统素(或它的前体原系统素)在受伤部位激活茉莉酸的合成,使之达到系统反应的水平,应对外来伤害;茉莉酸或其衍生物是重要的系统伤信号分子,它诱导伤防御基因的系统表达.植物的系统伤反应可比做动物的炎症反应,它们之间有许多相似之处.  相似文献   

5.
茉莉酸甲酯与水杨酸在诱导黑麦草颖花开放中的拮抗效应   总被引:15,自引:2,他引:15  
在意大利黑麦草完全没有开颖的情况下,1mmol.L^-1MeJA处理体穗2min,11h内可使其单穗颖花开放数达25左右,表现出明显的诱导效应,滞后期约为160min;10mmol.L^-1和1mmol.L^-1的SA对MeJA诱导的开颖效应均有抑制作用,这种抑制作用可被MeJA处理解除。  相似文献   

6.
植物伤反应中的茉莉酸类信号   总被引:9,自引:0,他引:9  
植物伤反应包括伤信号的产生、传递、感知和转导。植物伤反应信号通路是一网络系统。茉莉酸类是植物伤反应中的重要信号分子,乙烯、ABA、系统素、水杨酸、过氧化氢等也参与伤信号转导。伤反应信号通路与其他生物、非生物胁迫反应信号通路交互作用,使植物能够在时空上对不同的胁迫做出正确响应。  相似文献   

7.
水杨酸,茉莉酸和乙烯在调控蚕豆气孔运动中的相互关系   总被引:5,自引:0,他引:5  
《植物生理学报》2000,26(6):487-491
  相似文献   

8.
茉莉酸类在伤信号转导中的作用机制   总被引:23,自引:2,他引:23  
茉莉酸是伤反应所必须的信号分子。文章介绍伤信号转导中茉莉酸类的作用及其与系统素、乙烯、脱落酸、寡糖素、电子流等其他信号分子的关系和其作用的可能机制。  相似文献   

9.
植物防循御反应中水杨酸与茉莉酸的“对话”机制   总被引:1,自引:0,他引:1  
水杨酸和茉莉酸是介导植物防御反应的两种重要信号分子。它们的生物合成途径迥然不同、对PRs以及防御反应的诱导方面具有相对独立性;虽然两者之间存在若干相互拮抗现象,但它们在介导植物防御反应中却又表现出一定的协同效应。本文综述了两者关系研究中的一些新进展,并提出该领域亟待解决的有关问题,以期为了解、调控和利用植物防御反应提供理论依据。  相似文献   

10.
本文旨在探究不同诱导子对西洋参愈伤组织生长、相关酶活性及其人参皂苷含量的影响,在西洋参愈伤组织中,应用HPLC检测了添加诱导子茉莉酸甲酯(methyl jasmonate,MeJA)和水杨酸(salicylic acid,SA)后西洋参愈伤组织皂苷生物合成的变化。结果显示,MeJA抑制生长,但SA对其生长影响较小;2种诱导子均可以显著激活西洋参愈伤组织中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)活性和丙二醛(malondialdehyde,MDA)含量;培养基中MeJA浓度为100μmol/L时,愈伤组织中总皂苷含量和产量均达到最大值,人参皂苷Rg_(1)、Re、Rb_(1)、Rc的含量最高,在SA诱导子试验组中,当SA浓度为300μmol/L时,西洋参愈伤组织中总皂苷含量和产量均达到最大值,人参皂苷Rb_(1)的含量最高。结果表明,在西洋参愈伤组织中添加适当浓度MeJA和SA诱导子会提高人参皂苷化合物含量,其中以MeJA诱导人参总皂苷的效果最好,同时也会影响西洋参愈伤组织的生长量。说明在培养过程中添加外源诱导子,有利于提高西洋参愈伤组织中皂苷含量。  相似文献   

11.
Mutation in the wound-induced peptide transporter gene AtPTR3 (At5g46050) of Arabidopsis thaliana has been shown to affect germination on media containing a high salt concentration. The heterologous expression in yeast was utilized to verify that the AtPTR3 protein transports di-and tripeptides. The T-DNA insert in the Atptr3-1 mutant in the Arabidopsis ecotype C24 revealed two T-DNA copies, the whole vector sequence, and the gus marker gene inserted in the second intron of the AtPTR3 gene. An almost identical insertion site was found in the Atptr3-2 mutant of the Col-0 ecotype. The AtPTR3 expression was shown to be regulated by several signalling compounds, most clearly by salicylic acid (SA), but also methyl jasmonate (MeJA) and abscisic acid. Real-time PCR experiments suggested that the wound-induction of the AtPTR3 gene was abolished in the SA and JA signalling mutants. The Atptr3 mutant plants had increased susceptibility to virulent pathogenic bacteria Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tomato, and produced more reactive oxygen species when grown on media containing paraquat or rose bengal. Public microarray data suggest that the AtPTR3 expression was induced by Pseudomonas elicitors and by avirulent P. syringae pathovars and type III secretion mutants. This was verified experimentally for the hrpA mutant with real-time PCR. These results suggest that AtPTR3 is one of the defence-related genes whose expression is reduced by virulent bacterium by type III dependent fashion. Our results suggest that AtPTR3 protects the plant against biotic and abiotic stresses.  相似文献   

12.
Nitric oxide (NO) has been associated with plant defense responses during microbial attack, and with induction and/or regulation of programmed cell death. Here, we addressed whether NO participates in wound responses in Arabidopsis thaliana (L.) Heynh.. Real-time imaging by confocal laser-scanning microscopy in conjunction with the NO-selective fluorescence indicator 4,5-diaminofluorescein diacetate (DAF-2 DA) uncovered a strong NO burst after wounding or after treatment with JA. The NO burst was triggered within minutes, reminiscent of the oxidative burst during hypersensitive responses. Furthermore, we were able to detect NO in plants (here induced by wounding) by means of electron paramagnetic resonance measurements using diethyldithiocarbamate as a spin trap. When plants were treated with NO, Northern analyses revealed that NO strongly induces key enzymes of jasmonic acid (JA) biosynthesis such as allene oxide synthase (AOS) and lipoxygenase (LOX2). On the other hand, wound-induced AOS gene expression was independent of NO. Furthermore, JA-responsive genes such as defensin (PDF1.2) were not induced, and NO induction of JA-biosynthesis enzymes did not result in elevated levels of JA. However, treatment with NO resulted in accumulation of salicylic acid (SA). In transgenic NahG plants (impaired in SA accumulation and/or signaling), NO did induce JA production and expression of JA-responsive genes. Altogether, the presented data demonstrate that wounding in Arabidopsis induces a fast accumulation of NO, and that NO may be involved in JA-associated defense responses and adjustments.Abbreviations AOS Allene oxide synthase - cPTIO Carboxy-2-phenyl-4,4,5,5-tetramethylimidazolinone-3-oxide-1-oxyl - DAF-2 DA 4,5-Diaminofluorescein diacetate - DETC Diethyldithiocarbamate - EPR Electron paramagnetic resonance - iNOS Inducible nitric oxide synthase - JA Jasmonic acid - JIP Jasmonic acid-induced protein - LOX2 Lipoxygenase 2 - NO Nitric oxide - OPR3 12-Oxophytodienoate reductase - PDF1.2 Plant defensin - ROS Reactive oxygen species - SA Salicylic acid - SNP Sodium nitroprusside  相似文献   

13.
Jasmonic acid (JA) and salicylic acid (SA) are plant hormones involved in plant growth and development. Recent studies demonstrated that presence of a complex interplay between JA and SA signaling pathways to response to pathogenesis attack and biotic stresses. To our best knowledge, no method has existed for simultaneous analyses of JA, SA, and their related compounds. Especially, the glucosides are thought to be the storages or the inactivated compounds, but their contribution should be considered for elucidating the amount of the aglycons. It is also valuable for measuring the endogenous amount of phenylalanine, cinnamic acid, and benzoic acid that are the biosynthetic intermediates of SA due to the existence of isochorismate pathway to synthesize SA. We established this method using deuterium labeled compounds as internal standards. This is the first report of simultaneous analysis of endogenous JA, SA, and their related compounds. Measuring the endogenous JA, SA, and their related compounds that had been accumulated in tobacco plants proved the practicality of the newly developed method. It was demonstrated that accumulation of JA, SA and their related compounds were induced in both case of TMV infection and abiotic stresses.  相似文献   

14.
This study presents a kinetic analysis of the response to wounding in rice plants. In particular, jasmonic acid, salicylic acid, and lipoxygenase activity were measured in leaves of wounded rice plants during the early tillering phase. The results show that endogenous jasmonic acid transiently increases to a maximum 30 min after wounding (jasmonic acid burst) and lipoxygenase activity increases after the jasmonic acid burst, but not after the second smaller peak of endogenous jasmonic acid 23 h after wounding. In contrast, endogenous salicylic acid decreases during the jasmonic acid burst, such that the kinetic profiles of jasmonic acid and salicylic acid are inversely correlated during the early response to wounding. It is proposed here that the increase in endogenous jasmonic acid and the decrease in endogenous salicylic acid may contribute for establishing the efficient negative cross-talk between jasmonic acid and salicylic acid signaling pathways during the early response to wounding in rice.  相似文献   

15.
Vacuolar processing enzyme (VPE) is a cysteine protease responsible for the maturation of various vacuolar proteins in higher plants. The Arabidopsis thaliana (L.) Heynh. VPE gene, encoding a VPE homologue, is slowly up-regulated in both local and systemic leaves in response to wounding. To clarify the activation mechanism of VPE, we examined the accumulation of VPE mRNA after hormone treatments or after wounding in wild-type and various mutant plants of Arabidopsis. Both ethylene and jasmonic acid (JA) are known as signal molecules that activate the wound-responsive genes. However, treatment with exogenous JA had little effect on the VPE response, although JA activated the vegetative storage protein (VSP) gene, a typical wound-responsive gene. Wounding activated VPE even in two ethylene-insensitive plants (etr1-1 and ein2-1). Thus, the wound-induced expression of VPE was independent of ethylene and JA. We found that the wound-induced expression of VPE was reduced in two SA-deficient plants (pad4-1 and NahG), while the wound-induced expression of VSP increased in these mutants. Appreciable accumulation of SA was not observed in either the local or systemic leaves after wounding. These results suggest that endogenous SA enhances the wound-induced expression of VPE and attenuates the wound-induced expression of VSP, although SA is not a wound-signal that directly activates these genes.Abbreviations ABA abscisic acid - GST glutathione S-transferase - INA 2,6-dichloroisonicotinic acid - JA jasmonic acid - MeJA methyl jasmonate - PR pathogenesis-related - RBCS Rubisco small subunit - SA salicylic acid - VPE vacuolar processing enzyme - VSP vegetative storage protein  相似文献   

16.
17.
The Myriad Plant Responses to Herbivores   总被引:48,自引:0,他引:48  
Abstract Plant responses to herbivores are complex. Genes activated on herbivore attack are strongly correlated with the mode of herbivore feeding and the degree of tissue damage at the feeding site. Phloem-feeding whiteflies and aphids that produce little injury to plant foliage are perceived as pathogens and activate the salicylic acid (SA)-dependent and jasmonic acid (JA)/ethylene-dependent signaling pathways. Differential expression of plant genes in response to closely related insect species suggest that some elicitors generated by phloem-feeding insects are species-specific and are dependent on the herbivore's developmental stage. Other elicitors for defense-gene activation are likely to be more ubiquitous. Analogies to the pathogen-incompatible reactions are found. Chewing insects such as caterpillars and beetles and cell-content feeders such as mites and thrips cause more extensive tissue damage and activate wound-signaling pathways. Herbivore feeding is not equivalent to mechanical wounding. Wound responses are a part of the induced responses that accompany herbivore feeding. Herbivores induce direct defenses that interfere with herbivore feeding, growth and development, fecundity, and fertility. In addition, herbivores induce an array of volatiles that creates an indirect mechanism of defense. Volatile blends provide specific cues to attract herbivore parasites and predators to infested plants. The nature of the elicitors for volatile production is discussed.  相似文献   

18.
伤胁迫对蚕豆叶片中茉莉酸分布的影响   总被引:2,自引:0,他引:2  
在植物应对伤害等环境刺激的反应中,已知茉莉酸(JA)作为一种重要的信号分子在植物体内长距离运输,但目前对JA的细胞和亚细胞定位知之甚少。本研究用免疫荧光显微镜技术和免疫胶体金电镜技术证明茉莉酸分布在蚕豆叶片叶肉细胞的叶绿体、表皮细胞的细胞壁、保卫细胞的细胞壁、细胞质、叶绿体和细胞核上。其中保卫细胞的叶绿体和细胞核是JA分布的主要场所。叶片的局部灼伤可提高JA在质外体和气孔保卫细胞中的水平。由此推测,伤胁迫下JA分配的改变可能与植物体防御反应密切相关,并参与了对气孔运动的调控。  相似文献   

19.
To investigate the molecular mechanisms of bacterial resistance in susceptible and resistant cultivars of tomato, a proteomic approach was adopted. Four cultivars of tomato were selected on the basis of their response to bacterial (Pseudomonas solanacearum) inoculation wherein cultivar Roma and Riogarande, and cultivar Pusa Ruby and Pant Bahr were considered as resistant and susceptible cultivars, respectively. Proteins were extracted from leaves of 3-week-old seedlings of the four cultivars and separated by 2-DE. A total of nine proteins were found to be differentially expressed between the susceptible and resistant cultivars. Amino acid sequences of these proteins were determined with a protein sequencer. The identified proteins belongs to the categories of energy, protein destination and storage, and defense. Of these proteins, a 60 kDa chaperonin and an apical membrane antigen were significantly upregulated in resistant cultivars compared with susceptible cultivars. Application of jasmonic acid and salicylic acid resulted in significant changes in levels of apical membrane antigen and protein disulfide-isomerase. Taken together, these results suggest that apical membrane antigen might be involved in bacterial resistance process through salicylic acid induced defense mechanism signaling in tomato plants.  相似文献   

20.
We report isolation of two novel rice (Oryza sativa L.) mitogen-activated protein kinases (MAPKs), OsMSRMK3 (multiple stress responsive) and OsWJUMK1 (wound- and JA-uninducible) that most likely exist as single copy genes in its genome. OsMSRMK3 and OsWJUMK1 encode 369 and 569 amino acid polypeptides having the MAPK family signature and phosphorylation activation motifs TEY and TDY, respectively. Steady state mRNA analyses of these MAPKs with constitutive expression in leaves of two-week-old seedlings revealed that OsMSRMK3 was up-regulated upon wounding (by cut), jasmonic acid (JA), salicylic acid (SA), ethylene, abscisic acid, hydrogen peroxide (H(2)O(2)), protein phosphatase inhibitors, chitosan, high salt/sugar, and heavy metals, whereas OsWJUMK1 not induced by either wounding, JA or SA, showed up-regulation only by H(2)O(2), heavy metals, and cold stress (12 degrees C). Moreover, these MAPKs were developmentally regulated. These results strongly suggest a role for OsMSRMK3 and OsWJUMK1 in both stress-signalling pathways and development in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号