首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizopus lipases have been successfully expressed in Pichia pastors and different fermentation strategies have been investigated. However, there is no sufficient study on the effects of methanol concentration on the production of Rhizopus lipases in P. pastors. In this study, the lipase from Rhizopus chinensis CCTCC M20102 was expressed under different fed-batch fermentation conditions at methanol concentrations ranging from 0.5 to 3.5 g/L. The lipase activity, stability, and productivities were analyzed. The optimum methanol concentration was 1 g/L, with the highest lipase activity of 2,130 U/mL, without degradation. Additional information was obtained from the analysis of methanol consumption and production rates. The results also suggested that the cell concentration at the end of the glycerol fed-batch phase was very important for cell viability and protease activity.  相似文献   

2.
The phytopathogenic fungus Sclerotium (Athelia) rolfsii CBS 191.62 is a very efficient producer of the hemoflavoprotein, cellobiose dehydrogenase (CDH), forming up to 225 mg l(-1) (15,000 units cytochrome c activity l(-1)) of this protein, which is of biotechnological interest for sensors, biocatalysis and bioremediation. Both cellulose as inducing substrate and the use of a rich medium containing increased concentrations of peptone from meat or suitable amino acids are important for attaining high CDH yields. CDH, containing a protease-sensitive linker region, can be cleaved by endogenous proteases into a catalytically active flavin fragment and an inactive heme domain. By using increased concentrations of peptone, or certain amino acids such as valine or leucine, or by adding exogenous protease inhibitors, this cleavage can be almost completely inhibited, so that more than 95% intact CDH is obtained under optimised culture conditions. When using non-inhibitory amino acids, e.g. glutamine or lysine, in the medium, more than 80% of the total cellobiose-oxidising activity can be attributed to the flavin fragment.  相似文献   

3.
The present study examined the apoptosis inducing effects of Amaranthus spinosus L. aqueous extract in Allium cepa root meristematic cells and human erythrocytes. Cytogenetic assay revealed many apoptosis inducing cytogenetic aberrations viz., cytoplasmic breakage, cytoplasmic disintegration, cytoplasmic shrinkage, receding of cytoplasm, cytoplasmic vacuolation, enucleated cell, ghost cell, nuclear vacuolation, nuclear fragmentation and nuclear disintegration. A remarkable modification of red blood cell surface morphology was observed in the result of RBC assay. The treated RBCs show membrane blebbing and shrinkage, features typical for apoptosis in nucleated cells. Significant induction of cell death was observed in treated Allium root tip cells after Evans blue staining, disclosing the membrane damage potential of the plant extract. TTC assay results in reduced mitochondrial/metabolic activity in Allium root tip cells after treatment, designating the adverse effect of plant extract on mitochondrial respiratory chain. These results confirm the apoptosis inducing potential of A. spinosus extract. Confirming the present results by further in vitro studies, it can be effectively targeted against cell proliferation during cancer treatment by inducing apoptosis. Thus from the present investigation it can be concluded that the aqueous extract of A. spinosus exhibited apoptosis induction and cytotoxic activities.  相似文献   

4.
Cytochrome c 6 , (cyt c 6) a soluble monoheme electron transport protein, was isolated and characterized from the chlorophyll d-containing cyanobacterium Acaryochoris marina, the type strain MBIC11017. The protein was purified using ammonium sulfate precipitation, ion exchange and gel filtration column chromatography, and fast performance liquid chromatography. Its molecular mass and pI have been determined to be 8.87 kDa and less than 4.2, respectively, by mass spectrometry and isoelectrofocusing (IEF). The protein has an alpha helical structure as indicated by CD (circular dichroism) spectroscopy and a reduction midpoint potential (E m) of +327 mV versus the normal hydrogen electrode (NHE) as determined by redox potentiometry. Its potential role in electron transfer processes is discussed.  相似文献   

5.
Chronic UVA irradiation has been reported to induce photoaging and photocarcinogenesis. UVA is a potent inducer of reactive oxygen species (ROS), which can induce various biological processes, including apoptosis. Polypeptide from Chlamys farreri (PCF) is a novel marine active material isolated from the gonochoric Chinese scallop C. farreri. In our previous studies, PCF was found to be an effective antioxidant inhibiting UVA-induced ROS production and a potential inhibitory agent for UVA-induced apoptosis in the human keratinocyte cell line HaCaT. The intracellular mechanisms of how PCF protects HaCaT cells from UVA-induced apoptosis are not understood. Thus, we here investigate the effect of PCF on UVA-induced intracellular signaling of apoptosis. Pretreatment with the ROS scavenger N-acetylcysteine (NAC), the p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor Ac-DEVD-CHO was found to effectively prevent UVA-induced apoptosis, indicating that ROS, p38 MAPK and caspase-3 play important roles in apoptosis. H2O2-induced apoptosis was attenuated by PCF, suggesting that PCF plays its anti-apoptotic role through its antioxidant activity. In addition, PCF treatment inhibited UVA-induced p38 MAPK activation and caspase-3 activation, as assayed by Western blot analysis and flow cytometry, respectively. Our results suggest that PCF attenuates UVA-induced apoptosis through a reduction of ROS generation and diminished p38 MAPK and caspase-3 activation.  相似文献   

6.
Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC50 values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell’s blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge’s extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.  相似文献   

7.
Bacterial biofilms are associated with chronic infections due to their resistance to antimicrobial agents. Staphylococcus aureus is a versatile human pathogen and can form biofilms on human tissues and diverse medical devices. To identify novel biofilm inhibitors of S. aureus, the supernatants from a library of 458 Actinomycetes strains were screened. The culture supernatants (1% v/v) of more than 10 Actinomycetes strains inhibited S. aureus biofilm formation by more than 80% without affecting the growth. The culture supernatants of these biofilm-reducing Actinomycetes strains contained a protease (equivalent to 0.1 μg proteinase K ml−1), which both inhibited S. aureus biofilm formation and detached pre-existing S. aureus biofilms. This study suggests that protease treatment could be a feasible tool to reduce and eradicate S. aureus biofilms.  相似文献   

8.
Over the past decades there has been a significant increase in fungal infections caused by Candida species, and continues to be common in immunocompromised individuals infected with the human immunodeficiency virus (HIV). Although Candida albicans remains the fungal species most frequently isolated as an opportunistic oral pathogen, other non-albicans are often identified in this cohort of patients, including C. dubliniensis. This yeast is closely related to and shares many phenotypic characteristics with C. albicans. Colonies of these two species appear morphologically identical when not grown on special media. The shared phenotypic characteristics of C. dubliniensis and C. albicans suggest that many C. dubliniensis isolates may have been misidentified as C. albicans in the past. The present studies aim is to recover and identify C. dubliniensis, and presumptive clinical C. albicans, from the oral cavities of HIV-seropositive individuals, comparing conventional media to obtain a simple, low-cost and reliable identification system for C. dubliniensis. A total of 16 isolates (3,98%) had been obtained from 402 HIV infected individuals with recurrent oropharyngitis and were identified as C. dubliniensis. Out of these C. dubliniensis isolates 19% were resistant, with MICs above 64 μg/ml to fluconazole. This constitutes, to the authors knowledge the first recovery of this organism in Venezuela.  相似文献   

9.
10.
11.
The etiologic agent of Chagas’ disease, Trypanosoma cruzi, is widely distributed in South America, affecting millions of people with thousands of deaths every year. Adherence of the infectious trypomastigote to host cells is mediated by sialic acid. T. cruzi cannot synthesize sialic acids on their own but cleave them from the host cells and link them to glycans on the surface of the parasites using the trans-sialidase, a GPI-anchored enzyme. The infectivity of the protozoan parasites strongly depends on the activity of this enzyme. In this report, we investigated whether the transfer of sialic acids from the host to the parasites can be attenuated using novel sialic acid precursors. The cell line 86-HG-39 was infected with T. cruzi and treated with defined N-acylmannosamine analogues bearing an elongated N-acyl side-chain. By treatment of these cells the number of T.cruzi infected cell was reduced up to 60%. We also showed that the activity of the bacterial sialidase C was reduced with N-glycan substrates with elongated N-acyl side chains of the terminal sialic acids. The affinity of this sialidase decreased with the length of the N-acyl side-chain. The data presented suggest that N-acyl modified sialic acid precursors can change the transfer of sialic acids leading to modification of infection. Since the chemotherapy of this disease is inefficient and afflicted by side effects, the need of effective drugs is lasting. These findings propose a new path to prevent the dissemination of T. cruzi in the human hosts. These compounds or further modified analogues might be a basis for the search of new agents against Chagas’ disease.  相似文献   

12.
Birch J  Ellis SA 《Immunogenetics》2007,59(4):273-280
Natural killer cell responses are controlled to a large extent by the interaction of an array of inhibitory and activating receptors with their ligands. The mostly nonpolymorphic CD94/NKG2 receptors in both humans and mice were shown to recognize a single nonclassical MHC class I molecule in each case. In this paper, we describe the CD94/NKG2 gene family in cattle. NKG2 and CD94 sequences were amplified from cDNA derived from four animals. Four CD94 sequences, ten NKG2A, and three NKG2C sequences were identified in total. In contrast to human, we show that cattle have multiple distinct NKG2A genes, some of which show minor allelic variation. All of the sequences designated NKG2A have two tyrosine-based inhibitory motifs in the cytoplasmic domain and one putative gene has, in addition, a charged residue in the transmembrane domain. NKG2C appears to be essentially monomorphic in cattle. All of the NKG2A sequences are similar apart from NKG2A-01, which, in contrast, shares the majority of its carbohydrate recognition domain with NKG2-C. Most of the genes appear to generate multiple alternatively spliced forms. These findings suggest that the CD94/NKG2A heterodimers in cattle, in contrast to other species, are binding several different ligands. Because NKG2C is not polymorphic, this raises questions as to the combined functional capacity of the CD94/NKG2 gene families in cattle.  相似文献   

13.
14.

Background

The murine double minute 2 (MDM2) is an oncogene and a negative regulator of the tumor suppressor protein p53. MDM2 is known to be amplified in numerous human cancers, and upregulation of MDM2 is considered to be an alternative mechanism of p53 inactivation. The presence of many splice variants of MDM2 has been observed in both normal tissues and malignant cells; however their impact and functional properties in response to chemotherapy treatment are not fully understood.Here, we investigate the biological effects of three widely expressed alternatively spliced variants of MDM2; MDM2-A, MDM2-B and MDM2-C, both in unstressed MCF-7 breast cancer cells and in cells subjected to chemotherapy. We assessed protein stability, subcellular localization and induction of downstream genes known to be regulated by the MDM2-network, as well as impact on cellular endpoints, such as apoptosis, cell cycle arrest and senescence.

Results

We found both the splice variants MDM2-B and -C, to have a much longer half-life than MDM2 full-length (FL) protein after chemotherapy treatment indicating that, under stressed conditions, the regulation of degradation of these two variants differs from that of MDM2-FL. Interestingly, we observed all three splice variants to deviate from MDM2-FL protein with respect to subcellular distribution. Furthermore, while MDM2-A and -B induced the expression of the pro-apoptotic gene PUMA, this effect did not manifest in an increased level of apoptosis.

Conclusion

Although MDM2-B induced slight changes in the cell cycle profile, overall, we found the impact of the three MDM2 splice variants on potential cellular endpoints upon doxorubicin treatment to be limited.
  相似文献   

15.
Ectomycorrhizal (EM) basidiomycete fungi are obligate mutualists of pines and hardwoods that receive fixed C from the host tree. Though they often share most recent common ancestors with wood-rotting fungi, it is unclear to what extent EM fungi retain the ability to express enzymes that break down woody substrates. In this study, we tested the hypothesis that the dominant EM fungus in a pure pine system retains the ability to produce enzymes that break down woody substrates in a natural setting, and that this ability is inducible by reduction of host photosynthetic potential via partial defoliation. To achieve this, pines in replicate blocks were defoliated 50% by needle removal, and enzyme activities were measured in individual EM root tips that had been treated with antibiotics to prevent possible bacterial activity. Results indicate that the dominant EM fungal species (Suillus granulatus) expressed all enzymes tested (endocellulase D-glucosidase, laccase, manganese peroxidase, lignin peroxidase, phosphatase and protease), and that activities of these enzymes increased significantly (P < 0.001) in response to defoliation. Thus, this EM fungus (one of the more specialized mutualists of pine) has the potential to play a significant role in C, N and P cycling in this forested ecosystem. Therefore, many above-ground factors that reduce photosynthetic potential or divert fixed C from roots may have wide-reaching ecosystem effects.  相似文献   

16.
Travellers’ diarrhoea caused by enteric protozoa like Entamoeba histolytica is among the most common protozoan diseases in developing countries. In developing countries, amoebiasis is the second most prevalent protozoan disease. This protozoan parasite is often known to coexist as a part of the normal gut microbiota. It is estimated that around 50–60 % of population in developing countries might be harbouring Entamoeba in an asymptomatic manner. Due to physiological perturbation or upon immuno-compromise, it can become virulent and then cause diarrhoea, bloody stools and may invade other organs if left untreated. Nitroimidazole drugs, namely metronidazole and tinidazole, are widely used to treat protozoan infections. These drugs often show dose-dependent side effects. With emerging antibiotic resistance, novel therapeutics to prevent parasitic infections is required. This study aims to study effect of probiotics on prevention of Amoebiasis. In this study, we have investigated the effect of selected probiotics on the growth of Entamoeba. From the list of probiotics being currently used, five bacterial strains were selected for testing. These probiotic strains were co-cultured with Entamoeba, and their effect on Entamoeba proliferation was checked. Of the five probiotics chosen, individual treatments of Lactobacillus casei and Enterococcus faecium showed a significant reduction of up to 71 % in parasite survival only at higher CFUs. When the two probiotics were used in combination, the percentage of survival reduced gradually further to 80 % at a total CFU of 109 cells/ml of bacteria. The study lays the foundation for providing cost-effective prophylactic treatment for amoebiasis without the overuse of antibiotics.  相似文献   

17.
18.
Periodontitis is an inflammatory disease caused by subgingival microorganisms and their components, such as lipopolysaccharide (LPS). Responses of the host to LPS are mediated by CD14 and LPS-binding protein (LBP). In this study, it was determined that proteases from a periodontal pathogen, Prevotella intermedia, cleave CD14 and LBP, and thereby modulate the virulence of LPS. Culture supernatants from two strains of P. intermedia (ATCC 25611 and 25261) cleaved CD14 and LBP in a concentration-dependent manner. Zymographic and molecular mass analysis revealed the presence of a membrane-associated, 170-kDa, monomeric protease. Class-specific inhibitors and stimulators demonstrated that this enzyme is a metal-requiring, thiol-activated, cysteine protease. The protease was stable over a wide range of temperatures (4-56 degrees C) and pH values (4.5-8.5). This enzyme also decreased the expression of interleukin-1beta (IL-1beta)-specific mRNA in the LPS-activated macrophage-like cell lines U937 and THP-1 in a concentration-dependent manner, indicating that it also cleaves membrane-associated CD14. Furthermore, addition of soluble CD14 abrogated protease-mediated inhibition of IL-1 mRNA expression induced by LPS. The observations suggest that proteolysis of CD14 and LBP by P. intermedia protease might modulate the virulence of LPS at sites of periodontal infections.  相似文献   

19.
The rapid cold-hardening (RCH) response increases the cold tolerance of insects by protecting against non-freezing, cold-shock injury. Apoptosis, or programmed cell death, plays important roles in development and the elimination of sub-lethally damaged cells. Our objectives were to determine whether apoptosis plays a role in cold-shock injury and, if so, whether the RCH response protects against cold-induced apoptosis in Drosophila melanogaster. The present study confirmed that RCH increased the cold tolerance of the adults at the organismal level. No flies in the cold-shocked group survived direct exposure to ‒7°C for 2 h, whereas significantly more flies in the RCH group survived exposure to ‒7°C for 2 h after a 2-h exposure to 5°C. We used a TUNEL assay to detect and quantify apoptotic cell death in five groups of flies including control, cold-shocked, RCH, heat-shocked (37.5°C, 30 min), and frozen (‒20°C, 24 h) and found that apoptosis was induced by cold shock, heat shock, and freezing. The RCH treatment significantly improved cell viability by 38% compared to the cold-shocked group. Cold shock-induced DNA fragmentation shown by electrophoresis provided further evidence for apoptosis. SDS-PAGE analysis revealed an RCH-specific protein band with molecular mass of ∼150 kDa. Western-blotting revealed three proteins that play key roles in the apoptotic pathway: caspase-9-like (apoptotic initiator), caspase-3-like (apoptotic executioner) and Bcl-2 (anti-apoptotic protein). Consequently, the results of this study support the hypothesis that the RCH response protects against cold-shock-induced apoptosis.  相似文献   

20.
Aspergillus strains are being considered as potential hosts for recombinant heterologous protein production because of their excellent extracellular enzyme production characteristics. However, Aspergillus proteases are problematic in that they modify and degrade the heterologous proteins in the extracellular medium. In previous studies we observed that media adjustments and maintenance of a filamentous morphology greatly reduced protease activity and that a low concentration of the aspartic protease inhibitor pepstatin inhibited the latter protease activity to the extent of approximately 90%. In this paper we report that when the serine protease inhibitor chymostatin is used in combination with pepstatin 99–100% of total protease activity in Aspergillus cultures is inhibited. In protease assays a concentration of 30 μM chymostatin combined with 0.075 μM pepstatin was required for maximum inhibition. Inhibitor concentrations of chymostatin and pepstatin of 120 and 0.3 μM, respectively, when added to Aspergillus cultures, has no significant effect on biomass production, glucose utilization or culture pH pattern. The potential of using these protease inhibitors in cultures of recombinant Aspergillus strains producing heterologous proteins will now be investigated to determine if the previously observed recombinant protein denaturing effects of Aspergillus proteases can be negated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号