首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Excised watermelon (Citrullus vulgaris Schrad.) cotyledons were grown in the dark in the presence of 0.1 mM benzyladenine (BA). Under these conditions reserve breakdown and organelle differentiation progress very slowly. Treatment with BA accelerates, breakdown of reserves and stimulates development of organelles. Electron micrographs of cells from treated cotyledons show a larger number of plastids with a more developed inner membrane system. The levels of plastid pigments and enzymes are increased while starch content is reduced. Glyoxysomal enzyme levels are increased by BA during the first three days of development and their decline is accelerated thereafter. Also the activity of hydroxypyruvate reductase (EC 1.1.1.81.), a peroxisomal enzyme, is increased, but this increase is not followed by a decay phase. In water controls, hydroxypyruvate reductase bands together with glyoxysomal enzymes after equilibrium centrifugation in a sucrose gradient. In treated cotyledons the equilibrium position of glyoxysomal enzymes is uchanged while that of hydroxypyruvate reductase is shifted to a lower density.Abbreviations BA benzyladenine - RuDP ribulose-1,5-diphosphate - HPR hydroxypyruvate reductase  相似文献   

2.
C. Sautter 《Planta》1986,167(4):491-503
Microbody transition during the greening of watermelon cotyledons (Citrullus vulgaris Schrad.) was studied by double immunocytochemical labeling of the glyoxysomal marker enzyme isocitrate lyase and the peroxisomal marker enzyme hydroxypyruvate reductase. In order to analyze the immunocytochemistry, developmental stages representing the glyoxysomal, microbodytransition and peroxisomal stages were chosen, taking into account the time course of enzyme activity and the amounts of the respective antigens. It was shown that during microbody transition, between 83 and 91% of all the tested microbodies contained isocitrate lyase as well as hydroxypyruvate reductase, which was significantly higher than in the glyoxysomal and peroxisomal stages of development. Comprehensive controls precluded labeling artifacts. Our results support the one-population hypothesis first proposed by Trelease et al. (1971, Plant Physiol. 48, 461–465).Abbreviations ICJ isocitrate lyase - HPR hydroxypyruvate reductase - pAg small protein A-gold complex - pAG large protein A-gold complex  相似文献   

3.
A full-length cDNA clone encoding microbody NAD+-dependent malate dehydrogenase (MDH) of cucumber has been isolated. The deduced amino acid sequence is 97% identical to glyoxysomal MDH (gMDH) of watermelon, including the amino terminal putative transit peptide. The cucumber genome contains only a single copy of this gene. Expression of this mdh gene increases dramatically in cotyledons during the few days immediately following seed imbibition, in parallel with genes encoding isocitrate lyase (ICL) and malate synthase (MS), two glyoxylate cycle enzymes. The level of MDH, ICL and MS mRNAs then declines, but then MDH mRNA increases again together with that of peroxisomal NAD+-dependent hydroxypyruvate reductase (HPR). The mdh gene is also expressed during cotyledon senescence, together with hpr, icl and ms genes. These results indicate that a single gene encodes MDH which functions in both glyoxysomes and peroxisomes. In contrast to icl and ms genes, expression of the mdh gene is not activated by incubating detached green cotyledons in the dark, nor is it affected by exogenous sucrose in the incubation medium. The function of this microbody MDH and the regulation of its synthesis are discussed.  相似文献   

4.
M. Bosnes  O. -A. Olsen 《Planta》1992,188(3):376-383
In seedlings of the Scots pine (Pinus sylvestris L.), alanine aminotransferase (AlAT EC 2.6.1.2.) is present in the shoot and in the primary root but most activity is found in the cotyledons. During the experimental period (from 6 to 12 d after sowing), AlAT activity increased steadily. Anion exchange chromatography and native polyacrylamide gel electrophoresis were used to show that AlAT activity in extracts from cotyledons is associated with two isoforms of the enzyme. One isoform (AlAT 1) dominated in the cotyledons of lightgrown seedlings, but was absent from primary roots. Its accumulation was strongly increased by light, and both phytochrome and cryptochrome were shown to be involved in this effect. Results of experiments using dichromatic irradiation indicate that cryptochrome acts indirectly by establishing responsiveness towards phytochrome. When plastids were damaged by photooxidation, the accumulation of AlAT 1 decreased; however, AlAT 1 which had accumulated before the onset of photooxidative treatment seemed to remain undamaged. Therefore, and because of the absence of AlAT 1 from primary roots, it is suggested that this isoform is localized in leaf peroxisomes. The isoform AlAT 2 is the only one found in primary roots, and the predominant one in the cotyledons of dark-grown seedlings. It is unaffected by light. Upon photodestruction of plastids, a pronounced increase of its activity was found. This is taken as evidence that AlAT 2 is a cytosolic enzyme. Total AlAT activity in cotyledons was unaffected by feeding nitrate to the seedlings; supplying exogenous ammonium led to a considerably slower accumulation of AlAT compared with water controls. In contrast, AlAT accumulation in the primary roots was augmented by up to 45% if nitrogenous ions were supplied, ammonium being more effective than nitrate.Abbreviations and Symbols AlAT alanine aminotransferase (EC 2.6.1.2.) - B blue light - c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1.) - FR far-red light - HPR hydroxypyruvate reductase (EC 1.1.1.81.) - FPLC fast protein liquid chromatography - PAGE polyacrylamide gel electrophoresis - R red light - RG9 long-wavelength far-red light defined by the properties of the Schott glass filter RG9 (RG9 < 0.01) - =Pfr/Ptot far-red-absorbing form of phytochrome/total phtochrome, wavelength-dependent photoequilibrium of the phytochrome system This work was supported by Heidelberger Akademie der Wissenschaften (Forschungsstelle Nitratassimilation). We are very grateful to Ms. B. Seith for measuring the DNA contents of the seedlings.  相似文献   

5.
Hydroxypyruvate reductase (HPR), a marker enzyme of peroxisomes, has been purified to homogeneity from cotyledons of light-grown cucumber seedlings (Cucumis sativus var. Improved Long Green). In addition, the peroxisomal location of both HPR and serine-glyoxylate aminotransferase has been confirmed in cucumber cotyledons. The isolation procedure involved Polymin-P precipitation, a two-step precipitation with ammonium sulfate (35 and 50% saturation), affinity chromatography on Cibacron Blueagarose, and ion-exchange chromatography on DEAE-cellulose. HPR was purified 541-fold to a final specific activity of 525 ± 19 micromoles per minute per milligram of protein. Enzyme homogeneity was established by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was 91 to 95 kilodaltons, approximately double the apparent subunit molecular weight of 40,500 ± 1,400. With hydroxypyruvate as substrate, the pH optimum was 7.1 and Km values were 62 ± 6 and 5.8 ± 0.7 micromolar for hydroxypyruvate and NADH, respectively. With glyoxylate as substrate, the pH optimum was 6.0, and the Km values for glyoxylate and NADH were 5700 ± 600 and 2.9 ± 0.5 micromolar, respectively. Antibodies to HPR were raised in mice (by the ascites tumor method) and in rabbits, and their monospecificity was demonstrated by a modified Western blot immunodetection technique.  相似文献   

6.
7.
Methylobacterium sp. MB200 capable of producing glyoxylate from methanol was obtained by enrichment culture using a medium containing methanol as the sole carbon source. A hpr gene that encodes a hydroxypyruvate reductase (HPR) was cloned from this strain and was ligated into the vector pLAFR3 to obtain the recombinant plasmid pLAFRh, which was transferred into M. sp. MB200 to generate an recombinant strain MB201. Homologous expression of hpr under the control of the lacZ promoter led to the enhanced glyoxylate accumulation in cultures of Methylobacterium sp MB201. The yield of glyoxylate reached 14.38 mg/mL, representing nearly a twofold increase when compared with the wild-type strain.  相似文献   

8.
The development of glyoxysomal marker enzyme activities and concomitant ultrastructural evidence for the ontogeny of glyoxysomes has been studied in cotyledons of dark-grown watermelon seedlings (Citrullus vulgaris Schrad., var. Florida Giant). Catalase (CAT, EC 1.11.1.6) was stained in glyoxysomal structures with the 3,3-diaminobenzidine procedure. Serial sections and high-voltage electron microscopy were used to analyze the three-dimensional structure of the glyoxysomal population. With early germination CAT was localized in three distinct cell structures: spherical microbodies already present in freshly imbibed cotyledons; in appendices on lipid bodies; and in small membrane vesicles between the lipid bodies. Due to their ribosome-binding capacity, both appendices and small vesicles were identified as derivatives of the endoplasmic reticulum (ER). In the following period, glyoxysome formation and lipid body degradation were found to be inseparable processes. The small CAT-containing vesicles attach to a lipid body on a restricted area. Both lipid body appendices and attached cisternae enlarge around and between tightly packed lipid bodies and eventually become pleomorphic glyoxysomes with lipid bodies entrapped into cavities. The close contact between lipid body and glyoxysomes is maintained until the lipid body is digested and the glyoxysomal cavity becomes filled with cytoplasm. During the entire period of increase in glyoxysomal enzyme activities, no evidence was obtained for destruction of glyoxysomes, but small CAT-containing vesicles were observed from day 2 through day 6 after imbibition, indicating a continuous de novo formation of glyoxysomes. This study does not substantiate the hypothesis that glyoxysomes bud directly from the ER. Rather, ER-derivatives, e.g., lipid body appendices or cisternae attached to lipid bodies are interpreted as being glyoxysomal precursors that grow in close contact with lipid bodies both in volume and surface membrane area.Abbreviations CAT catalase - DAB 3,3 diaminobenzidine tetrahydrochloride - ER endoplasmic reticulum - GOX glycolate oxidase - HPR hydroxypyruvate reductase - HVEM high-voltage electron microscopy - ICL isocitrate lyase - MS malate synthase - RER rough endoplasmic reticulum In the figures bars represent 0.1 m (if not stated otherwise)  相似文献   

9.
The synthesis of glycerate by isolated intact spinach (Spinacia oleracea L.) leaf peroxisomes upon the addition of glycolate, serine, and glutamate, with either NADH or malate as reductant, has been measured. Measurement of the concentration dependence of NADH-and malate-dependent glycerate synthesis, and the exclusion of various artefacts, clearly demonstrate that under in vivo conditions the transfer of reducing equivalents into the peroxisomes required for the reduction of hydroxypyruvate to glycerate, occurs exclusively via a malate shuttle. The results indicate that a direct uptake of NADH into the peroxisomes does not occur under invivo conditions to any appreciable extent. As these results have been observed with intact as well as with osmotically shocked peroxisomes, it is concluded that the specificity of redox transfer into the peroxisomes is not due to a selectivity of the peroxisomal boundary membrane, but to a multi-enzyme structure of the peroxisomal matrix.Abbreviations GDH glycerophosphate dehydrogenase - GOT glutamate oxaloacetate transaminase - HPR hydroxy-pyruvate reductase - MDH malate dehydrogenase The authors are indebted to Mr. Bernd Raufeisen for the art work. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

10.
C. Gietl  B. Hock 《Planta》1986,167(1):87-93
A heterologous in-vitro system is described for the import of the precursor to glyoxysomal malate dehydrogenase from watermelon (Citrullus vulgaris Schrad., cv. Kleckey's Sweet No. 6) cotyledons into glyoxysomes from castor-bean (Ricinus communis L.) endosperm. The 41-kDa precursor is posttranslationally sequestered and correctly processed to the mature 33-kDa subunit by a crude glyoxysomal fraction or by glyoxysomes purified on a sucrose gradient. The import and the cleavage of the extrasequence is not inhibited by metal chelators such as 1,10-phenanthroline and ethylenediaminetetraacetic acid. Uncouplers (carbonylcyanide m-chlorophenylhydrazone), ionophores (valinomycin), or inhibitors of oxidative phosphorylation (oligomycin) and ATP-ADP translocation (carboxyatractyloside) do not interfere, thus indicating the independence of the process of import by the organelle from the energization of the glyoxysomal membrane.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - EDTA ethylenediaminetetraacctic acid - gMDH glyoxysomal malate dehydrogenase - PMSF phenylmethylsulfonyl fluoride  相似文献   

11.
Two full-length cDNAs encoding hydroxypyruvate reductase were isolated from a cDNA library constructed with poly(A)+ RNA from pumpkin green cotyledons. One of the cDNAs, designated HPR1, encodes a polypeptide of 386 amino acids, while the other cDNA, HPR2 encodes a polypeptide of 381 amino acids. Although the nucleotide and deduced amino acid sequences of these cDNAs are almost identical, the deduced HPR1 protein contains Ser-Lys-Leu at its carboxy-terminal end, which is known as a microbody-targeting signal, while the deduced HPR2 protein does not. Analysis of genomic DNA strongly suggests that HPR1 and HPR2 are produced by alternative splicing.  相似文献   

12.
Glyoxysomal citrate synthase (gCS) was purified from crude extracts of watermelon (Citrullus vulgaris Schrad.) cotyledons, yielding a homogenous protein with a subunit MW of 48 kDa. The enzyme was selectively inhibited by 5,5-dithiobis-(2-nitrobenzoic acid), allowing quantification in the presence of the mitochondrial isoenzyme (mCS). Differences were also observed with respect to inhibition by ATP (k i=2.6 mmol · l-1 for gCS, k i=0.33 mmol · l-1 for mCS). The antibodies prepared against gCS did not cross-react with mCS. The immunocytochemical localization of gCS by the indirect protein A-gold procedure was restricted to the glyoxysomal membrane or the peripheral matrix of glyoxysomes. Other compartments, e.g. the endoplasmic reticulum, were not labeled. Xenopus oocytes were used for the translation of watermelon polyadenylated RNA (poly(A)+RNA). A translation product with a MW of 51 kDa was immunoprecipitated by the anti-gCS antibodies. It was absent in controls without poly(A)+RNA or with preimmune serum. A similar translation product was also immunoprecipitated after cell-free synthesis of watermelon poly(A)+RNA in a reticulocyte system, in contrast to the in-vivo labeled gCS (48 kDa). It was concluded that gCS is synthesized as a higher-molecular-weight precursor.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - gCS glyoxysomal citrate synthase - gMDH glyoxysomal malate dehydrogenase - k i inhibitor constant - mCS mitochondrial citrate synthase - OAA oxaloacetate - poly(A)+RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

13.
Total poly A+-mRNA from watermelon cotyledons was translated in Xenopus laevis oocytes. Watermelon glyoxysomal malate dehydrogenase was found as its higher molecular weight precursor (pre-gMDH) and accumulates over at least 48 hours of translation. Organelle separation and immunocytochemistry located the watermelon pre-gMDH in the cytosol of the oocyte. The heterologous translation product from oocytes can be imported into isolated glyoxysomes from endosperm of castor bean. This import was correct in terms of protection against proteolysis and cleavage of the presequence within the limits of accuracy. We conclude that watermelon pre-gMDH accumulates in mRNA-injected oocytes as an import competent cytosolic precursor.  相似文献   

14.
A flavoenzyme which showed NADPH-cytochrome c reductase (NADPH-cytochrome c oxidoreductase EC 1.6.2.4) and transhydrogenase (NADPH-NAD+ oxidoreductase, EC 1.6.1.1) activities was purified to an electrophoretically homogeneous state from Nitrobacter winogradskyi. The reductase was a flavoprotein which contained one FAD per molecule but no FMN. The oxidized form of the enzyme showed absorption maxima at 272, 375 and 459 nm with a shoulder at 490 nm, its molecular weight was estimated to be 36,000 by SDS polyacrylamide gel electrophoresis, and the enzyme seemed to exist as a dimer in aqueous solution. The enzyme catalyzed reduction of cytochrome c, DCIP and benzylviologen by NADPH, oxidation of NADPH with menadione and duroquinone, and showed transhydrogenase activity. NADH was less effective than NADPH as the electron donor in the reactions catalyzed by the enzyme. The NADPH-reduction catalyzed by the enzyme of N. winogradskyi cytochrome c-550 and horse cytochrome c was stimulated by spinach ferredoxin. The enzyme reduced NADP+ with reduced spinach ferredoxin and benzylviologen radical.Abbreviations DCIP dichlorophenolindophenol - Tris trishydroxy-methylaminomethane - Mops 3-(N-morpholino) propanesulfonic acid - SDS sodium dodecylsufate  相似文献   

15.
Phaseolin, the major seed storage protein of Phaseolus vulgaris L., is degraded in the cotyledons in the first 7–10 d following seed germination. We assayed cotyledon extracts for protease activity by using [3H]phaseolin as a substrate and then fractionated the digestion mixtures by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in order to identify the cleavage products. The cotyledons of 4-d-old seedlings contain an endopeptidase which cleaves the polypeptides of [3H]phaseolin (apparent molecular weights=51 000, 48 000, 46 000 and 43 000) into three discrete clusters of proteolytic fragments (M rs=27 000, 25 000 and 23 000). Endopeptidase activity is not detected in the cotyledons until the protein content of these organs starts to decline, shortly after the first day of seedling growth. Endopeptidase activity increases to a maximum level in the cotyledons of 5-d-old seedlings and then declines to a minimum value by day 10. The enzyme was purified 335-fold by ammonium-sulfate precipitation, organomercurial-agarose chromatography, gel filtration and ion-exchange chromatography. The endopeptidase constitutes 0.3% of the protein content in the cotyledons of 4-d-old seedlings. It is a cysteine protease with a single polypeptide chain (M r=30 000). Optimum hydrolysis of [3H]phaseolin occurs at pH 5. The enzyme is irreversibly inactivated at pH values above 7 and at temperatures above 45° C. The endopeptidase attacks only a limited number of peptide bonds in [3H]phaseolin, without causing any appreciable change in the native molecular weight of the storage protein. The endopeptidase is also able to hydrolyze the bean-seed lectin, phytohemagglutinin. Thus, this enzyme may play a general role in degrading cotyledon proteins of P. vulgaris following seed germination.Abbreviations Da dalton - DTT dithiothreitol - M r apparent molecular weight - PAGE polyacrylamide gel electrophoresis - PHA phytohemagglutinin - SDS sodium dodecyl sulfate  相似文献   

16.
17.
Developing cotyledons of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) readily utilised exogenously supplied 14C-labelled fatty-acid substrates for the synthesis of triacylglycerols. The other major radioactive lipids were phosphatidylcholine and diacylglycerol. In safflower cotyledons, [14C]oleate was rapidly transferred to position 2 of sn-phosphatidylcholine and concomitant with this was the appearance of radioactive linoleate. The linoleate was further utilised in the synthesis of diacyl- and triacyl-glycerol via the reactions of the so-called Kennedy pathway. Supplying [14C]linoleate, however, resulted in a more rapid labelling of the diacylglycerols than from [14C]oleate. In contrast, sunflower cotyledons readily utilised both labelled acyl substrates for rapid diacylglycerol formation as well as incorporation into position 2 of sn-phosphatidylcholine. In both species, however, [14C]palmitate largely entered sn-phosphatidylcholine at position 1 during triacylglycerol synthesis. The results support our previous in-vitro observations with isolated microsomal membrane preparations that (i) the entry of oleate into position 2 of sn-phosphatidylcholine, via acyl exchange, for desaturation to linoleate is of major importance in regulating the level of polyunsaturated fatty acids available for triacylglycerol formation and (ii) Palmitate is largely excluded from position 2 of sn-phosphatidylcholine and enters this phospholipid at position 1 probably via the equilibration with diacylglycerol. Specie differences appear to exist between safflower and sunflower in relation to the relative importance of acyl exchange and the interconversion of diacylglycerol with phosphatidylcholine as mechanisms for the entry of oleate into the phospholipid for desaturation.Abbreviations FW fresh weight - TLC thin-layer chromatography  相似文献   

18.
19.
In germinated loblolly pine (Pinus taeda L.) seeds arginine accumulates in the seedling during its growth immediately following germination. The enzyme arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is responsible for hydrolyzing this arginine into ornithine and urea. Loblolly pine arginase was purified to homogeneity from seedling cotyledons by chromatographic separation on DE-52 cellulose, Matrex Green and arginine-linked Sepharose 4B. The enzyme was purified 148-fold and a single polypeptide band was identified as arginase. The molecular mass was determined to be 140 kDa by FPLC, while the subunit size was shown to be 37 kDa by SDS-PAGE, predicting a homotetramer holoprotein. Removal of manganese from the enzyme abolishes catalytic activity, which can be restored by incubating the protein with Mn2+. Antibodies, raised against the arginase subunit, are able to immunotitrate arginase activity and are monospecific for arginase on immunoblots.  相似文献   

20.
R. -A. Walk  B. Hock 《Planta》1977,134(3):277-285
The development of glyoxysomal malate dehydrogenase (gMDH, EC 1.1.1.37) during early germination of watermelon seedlings (Citrullus vulgaris Schrad.) was determined in the cotyledons by means of radial immunodiffusion. The active isoenzyme was found to be absent in dry seeds. By density labelling with deuterium oxide and incorporation of [14C] amino acids it was shown that the marked increase of gMDH activity in the cotyledons during the first 4 days of germination was due to de novo synthesis of the isoenzyme. The effects of protein synthesis inhibitors (cycloheximide and chloramphenicol) on the synthesis of gMDH indicated that the glyoxysomal isoenzyme was synthesized on cytoplasmic ribosomes. Possible mechanisms by which the glyoxysomal malate dehydrogenase isoenzyme reaches its final location in the cell are discussed.Abbreviations mMDH mitochondrial malate dehydrogenase - gMDH glyoxysomal malate dehydrogenase - D2O deuterium oxide - EDTA ethylenediaminetetraacetic acid, disodium salt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号