首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IL-6 is elevated in plasma of preeclamptic women, and twofold elevation of plasma IL-6 increases vascular resistance and arterial pressure in pregnant rats, suggesting a role of the cytokine in hypertension of pregnancy. However, whether the hemodynamic effects of IL-6 reflect direct effects of the cytokine on the mechanisms of vascular contraction/relaxation is unclear. The purpose of this study was to test the hypothesis that IL-6 directly impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. Active stress was measured in aortic strips isolated from virgin and late pregnant Sprague-Dawley rats and then nontreated or treated for 1 h with IL-6 (10 pg/ml to 10 ng/ml). In endothelium-intact vascular strips, phenylephrine (Phe, 10(-5) M) caused an increase in active stress that was smaller in pregnant (4.2 +/- 0.3) than virgin rats (5.1 +/- 0.3 x 10(4) N/m(2)). IL-6 (1,000 pg/ml) caused enhancement of Phe contraction that was greater in pregnant (10.6 +/- 0.7) than virgin rats (7.5 +/- 0.4 x 10(4) N/m(2)). ACh and bradykinin caused relaxation of Phe contraction and increases in vascular nitrite production that were greater in pregnant than virgin rats. IL-6 caused reductions in ACh- and bradykinin-induced vascular relaxation and nitrite production that were more prominent in pregnant than virgin rats. Incubation of endothelium-intact strips in the presence of N(omega)-nitro-L-arginine methyl ester (10(-4) M) to inhibit nitric oxide (NO) synthase, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-5) M) to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in nontreated but to a lesser extent in IL-6-treated vessels, particularly those of pregnant rats. Removal of the endothelium enhanced Phe-induced stress in nontreated but not IL-6-treated vessels, particularly those of pregnant rats. In endothelium-denuded strips, relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was not different between nontreated and IL-6-treated vessels of virgin or pregnant rats. Thus IL-6 inhibits endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of virgin and pregnant rats. The greater IL-6-induced inhibition of vascular relaxation and enhancement of contraction in systemic vessels of pregnant rats supports a direct role for IL-6 as one possible mediator of the increased vascular resistance associated with hypertension of pregnancy.  相似文献   

2.
The incidence of hypertension increases during the late stages of aging; however, the vascular mechanisms involved are unclear. We investigated whether the late stages of aging are associated with impaired nitric oxide (NO)-mediated vascular relaxation and enhanced vascular contraction and whether oxidative stress plays a role in the age-related vascular changes. Aging (16 mo) male spontaneously hypertensive rats (SHR) nontreated or treated for 8 mo with the antioxidant tempol (1 mM in drinking water) or vitamin E (E; 5,000 IU/kg chow) and vitamin C (C; 100 mg. kg-1. day-1 in drinking water) and adult (12 wk) male SHR were used. After the arterial pressure was measured, aortic strips were isolated from the rats for measurement of isometric contraction. The arterial pressure and phenylephrine (Phe)-induced vascular contraction were enhanced, and the ACh-induced vascular relaxation and nitrite/nitrate production were reduced in aging compared with adult rats. In aging rats, the arterial pressure was nontreated (188 +/- 4), tempol-treated (161 +/- 6), and E + C-treated (187 +/- 1 mmHg). Phe (10-5 M) caused an increase in active stress in nontreated aging rats (14.3 +/- 1.0) that was significantly (P < 0.05) reduced in tempol-treated (9.0 +/- 0.7) and E + C-treated rats (9.8 +/- 0.6 x 104 N/m2). ACh produced a small relaxation of Phe contraction in nontreated aging rats that was enhanced (P < 0.05) in tempol- and E + C-treated rats. l-NAME (10-4 M), inhibitor of NO synthase, or ODQ (10-5 M), inhibitor of cGMP production in smooth muscle, inhibited ACh relaxation and enhanced Phe contraction in tempol- and E + C-treated but not the nontreated aging rats. ACh-induced vascular nitrite/nitrate production was not different in nontreated, tempol- and E + C-treated aging rats. Relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was smaller in aging than adult rats but was not different between nontreated, tempol- and E + C-treated aging rats. Thus, during the late stages of aging in SHR rats, an age-related inhibition of a vascular relaxation pathway involving not only NO production by endothelial cells but also the bioavailability of NO and the smooth muscle response to NO is partially reversed during chronic treatment with the antioxidants tempol and vitamins E and C. The data suggest a role for oxidative stress in the reduction of vascular relaxation and thereby the promotion of vascular contraction and hypertension during the late stages of aging.  相似文献   

3.
Vascular reactivity has been shown to be reduced during pregnancy and to be enhanced during chronic inhibition of nitric oxide (NO) synthesis in pregnant rats; however, the cellular mechanisms involved are unclear. The purpose of this study was to investigate whether the pregnancy-induced changes in vascular reactivity are associated with changes in the amount and/or activity of vascular protein kinase C (PKC). Active stress as well as the amount and activity of PKC was measured in deendothelialized thoracic aortic strips from virgin and pregnant rats untreated or treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). In virgin rats, the PKC activator phorbol 12,13-dibutyrate (PDBu, 10(-6) M) and the alpha-adrenergic agonist phenylephrine (Phe, 10(-5) M) caused significant increases in active stress and PKC activity that were inhibited by the PKC inhibitors staurosporine and calphostin C. Western blot analysis in aortic strips of virgin rats showed significant amount of the alpha-PKC isoform. Both PDBu and Phe caused significant translocation of alpha-PKC from the cytosolic to the particulate fraction. Compared with virgin rats, the PDBu- and Phe-stimulated active stress and PKC activity as well as the amount and the PDBu- and Phe-induced translocation of alpha-PKC were significantly reduced in late pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. The PDBu- and Phe-induced changes in active stress and the amount, distribution, and activity of alpha-PKC in virgin rats treated with L-NAME were not significantly different from that in virgin rats, whereas the changes in pregnant rats treated with L-NAME + the NO synthase substrate L-arginine were not significantly different from that in pregnant rats. These results provide evidence that a PKC-mediated contractile pathway in vascular smooth muscle is reduced during pregnancy and significantly enhanced during chronic inhibition of NO synthesis. The results suggest that one possible mechanism of the pregnancy-associated changes in vascular reactivity may involve changes in the amount and activity of the alpha-PKC isoform.  相似文献   

4.
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.  相似文献   

5.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

6.
Normal pregnancy is associated with uterine relaxation to accommodate the stretch imposed by the growing fetus; however, the mechanisms underlying the relationship between pregnancy-associated uterine stretch and uterine relaxation are unclear. We hypothesized that increased uterine stretch during pregnancy is associated with upregulation of matrix metalloproteinases (MMPs), which in turn cause inhibition of myometrium contraction and promote uterine relaxation. Uteri from virgin, midpregnant (day 12), and late-pregnant rats (day 19) were isolated, and myometrium strips were prepared for measurement of isometric contraction and MMP expression and activity using RT-PCR, Western blot analysis, and gelatin zymography. Oxytocin caused concentration-dependent contraction of myometrium strips that was reduced in mid- and late-pregnant rats compared with virgin rats. Pretreatment with the MMP inhibitors SB-3CT (MMP-2/MMP-9 Inhibitor IV), BB-94 (batimastat), or Ro-28-2653 (cipemastat) enhanced contraction in myometrium of pregnant rats. RT-PCR, Western blot analysis, and gelatin zymography demonstrated increased mRNA expression, protein amount, and activity of MMP-2 and MMP-9 in myometrium of late-pregnant>midpregnant>virgin rats. Prolonged stretch of myometrium strips of virgin rats under 8 g basal tension for 18 h was associated with reduced contraction and enhanced expression and activity of MMP-2 and MMP-9, which were reversed by MMP inhibitors. Concomitant treatment of stretched myometrium of virgin rats with 17β-estradiol (E2), progesterone (P4), or E2+P4 was associated with further reduction in contraction and increased MMP expression and activity. MMP-2 and MMP-9 caused significant reduction of oxytocin-induced contraction of myometrium of virgin rat. Thus, normal pregnancy is associated with reduced myometrium contraction and increased MMPs expression and activity. The results are consistent with the possibility that myometrium stretch and concomitant increase in sex hormones during pregnancy are associated with increased expression/activity of specific MMPs, which in turn inhibit uterine contraction and promote uterine relaxation.  相似文献   

7.
We have determined that the methanolic extract of L. caulescens (MELc) produced a significant vasodilator effect in a concentration-dependent and endothelium-dependent manner. This relaxation was blocked by N(omega)-nitro-L-arginine methylester (L-NAME), indicating that MELc vasodilator properties are endothelium mediated due to liberation of nitric oxide (NO). In this paper we aimed to corroborate its mode of action. MELc effects on noradrenaline (NA)-induced contraction in isolated rat aortic thoracic rings with endothelium (+E), in the presence of atropine (0.1 microM) and 1-H-[1,2,4]-oxadiazolo-[4,3a]-quinoxalin-1-one (ODQ, 1 microM) were conducted. MELc relaxation curve was significantly shifted to the right in the presence of ODQ and atropine, thus confirming that its mode of action is related with activation of nitric oxide synthase (NOS) and the consequent increment in NO formation. Bio-guided study of MELc allowed the isolation of ursolic acid (UA, 50 mg) and ursolic-oleanolic acids mixture [UA/OA (7:3), 450 mg]. The relaxant effect of UA (0.038-110 microM) was evaluated in functional experiments. UA induced a significant relaxation in a concentration- and endothelium-dependent manner (IC(50)=44.15 microM) and did not produce a vasorelaxant effect on contraction evoked by KCl (80 mM). In addition, NA-induced contraction was significantly displaced to the right by UA (30 microM). In order to determine its mode of action, UA-induced relaxant effect was evaluated in the presence of atropine (0.1 microM), indomethacin (10 microM), L-NAME (100 microM) and ODQ (1 microM). Relaxation was blocked by L-NAME and ODQ. On the other hand, UA (3 microM) provoked a significant displacement to the left in the relaxation curve induced by sodium nitroprusside (SNP, 0.32 nM to 0.1 microM), but it was not significant in the presence of Carbamoyl choline (carbachol, 1 nM to 10 microM). These results indicate that UA-mediated relaxation is endothelium dependent, probably due to NO release, and the consequent activation of vascular smooth muscle soluble guanylate cyclase (sGC), a signal transduction enzyme that forms the second messenger cGMP.  相似文献   

8.
We examined the possibility that nitric oxide is one of the epithelium-derived relaxing factors in guinea pig airways. First we studied whether nitric oxide could relax isolated tracheal strips, and then we examined the effects of known inhibitors of endothelium-dependent relaxation (EDR) in the vascular system [hemoglobin, methylene blue, and NG-monomethyl-L-arginine (L-NMMA)] on epithelium-dependent relaxation (EpDR) induced by hyperosmotic stimuli in perfused whole tracheal preparations. Mannitol (160 mM in Krebs-Henseleit solution) applied to the epithelial surface was used as an osmotic stimulus to induce EpDR after carbachol-induced contraction (2 microM, serosal side). Nitric oxide produced concentration-dependent and complete relaxation of epithelium-denuded tracheal strips. Preincubation of the whole trachea with hemoglobin significantly inhibited osmotic-induced EpDR (P less than 0.05), but preincubation with methylene blue and L-NMMA did not. Hemoglobin introduced into the epithelial side after EpDR induced by hyperosmotic stimuli reversed relaxation, but methylene blue and L-NMMA did not. These results suggest that, although EpDR and vascular EDR have some pharmacological similarities and nitric oxide can relax airway smooth muscle, nitric oxide is not responsible for osmotic-induced EpDR.  相似文献   

9.
Patients with type 1 diabetes are at a risk of hypertension. However, the mechanisms behind the findings are not completely known. The aim of the present study was to investigate involvement of interleukin-6 (IL-6) on the contraction of abdominal aorta in rats with type 1 diabetes. IL-6 levels in the plasma of rats with streptozotocin (STZ)-induced diabetes were determined by ELISA. The abdominal aorta was dissected free of fat and connective tissues and then cut into spiral rings. The endothelium-denuded strip was vertically suspended in tissue chambers containing 5 ml Krebs solution at 37 degrees C and bubbled continuously with 95% O2-5% CO2. The effects of phenylephrine (Phe) on the contractile responses of abdominal aorta were recorded. The effects of IL-6 and anti-rat IL-6 antibody on the Phe-induced response were also examined. Plasma levels of IL-6 increased time-dependently in rats with STZ-induced diabetes. Phe caused concentration-dependent contraction in aortic rings. Phe-induced contractions were higher in vascular strips of STZ-induced diabetic rats than that of control rats. Pretreatment of vascular strips with IL-6 for 1 h did not cause contraction but enhanced the contraction in response to Phe. Treatment of the vascular strips with an anti-IL-6 antibody for 1 h decreased the Phe-induced contractions. These results suggest that IL-6 causes vascular smooth muscle contraction in abdominal aorta of rats with type 1 diabetes.  相似文献   

10.
Nitric oxide (NO) donors generally relax vascular preparations through cGMP-mediated mechanisms. Relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and coronary arteries to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) is almost eliminated by inhibition of soluble guanylate cyclase activation with 10 microM 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), whereas only a modest inhibition of relaxation is observed under hypoxia (PO2 = 8-10 Torr). This effect of hypoxia is independent of the contractile agent used and is also observed with NO gas. ODQ eliminated SNAP-induced increases in cGMP under hypoxia in BPA. cGMP-independent relaxation of BPA to SNAP was not attenuated by inhibition of K+ channels (10 mM tetraethylammonium), myosin light chain phosphatase (0.5 microM microcystin-LR), or adenylate cyclase (4 microM 2',5'-dideoxyadenosine). SNAP relaxed BPA contracted with serotonin under Ca2+-free conditions in the presence of hypoxia and ODQ, and contraction to Ca2+ readdition was also attenuated. The sarcoplasmic reticulum Ca2+-reuptake inhibitor cyclopiazonic acid (0.2 mM) attenuated SNAP-mediated relaxation of BPA in the presence of ODQ. Thus hypoxic conditions appear to promote a cGMP-independent relaxation of BPA to NO by enhancing sarcoplasmic reticulum Ca2+ reuptake.  相似文献   

11.
Shortage of endothelial nitric oxide (NO) manifested as decreased daily urinary excretion of nitrate and nitrite as well as attenuated endothelium-dependent relaxation of conduit and resistance vessels progresses with age-related increase of blood pressure (BP) in stroke-prone spontaneously hypertensive rats (SHRSP). Simultaneous NO-dependent suppression of vascular contractions is, apparently, due to the inducible NO synthase activity in vascular smooth muscle specific for spontaneously hypertensive rat. The adaptation of rats to hypobaric hypoxia initiated at early hypertensive stage (at the age of 5–6 weeks) decelerates hypertension progress. The antihypertensive effect of the adaptation was accompanied by stimulation of endothelial NO synthesis and prevention of impaired NO-dependent response in isolated blood vessels. Nitric oxide stores were formed in the vascular wall of SHRSP and WKY rats at the same time. The obtained data indicate that the correction of endothelial NO deficiency plays a significant role in the antihypertensive effect of adaptation to hypoxia.  相似文献   

12.
An aqueous extract of Schizandra chinensis fruit (ScEx) has long been used to promote the vascular health of postmenopausal women in Korea. This study investigated the ability of ScEx to relax rat aorta constricted with norepinephrine (NE) and the mechanism(s) of such relaxation. ScEx induced partial, endothelium-dependent relaxation. In particular, the relaxation induced by lower concentrations of ScEx (0.1 and 0.3 mg/ml) was largely endothelium-dependent, and was essentially abolished by NG-nitro-l-arginine, methylene blue, 1H-[1,2,3] oxadiazole [4,4-a] quinoxalin-1-one, indomethacin, or ICI 182,780. The results indicate that the response to ScEx involves enhancement of the nitric oxide (NO)-cGMP system, and that it occurs via estrogen receptors. The magnitude of the inhibition with these treatments decreased with increasing ScEx concentration, however, indicating that other vasorelaxation mechanisms are involved, which depend on the ScEx concentration. Calcium concentration-dependent contraction curves in high potassium depolarization medium were shifted significantly to the right and downward after incubation with ScEx (0.3 and 1.0 mg/ml), implying that ScEx is also involved in inhibition of the extracellular calcium influx to vascular smooth muscle. These data demonstrate that ScEx caused both endothelium-dependent and -independent vasorelaxation, which may contribute to understanding the cardiovascular protective effect of ScEx.  相似文献   

13.
Blunted agonist-induced vasoconstriction after chronic hypoxia is associated with endothelium-dependent vascular smooth muscle (VSM) cell hyperpolarization and decreased vessel-wall Ca(2+) concentration ([Ca(2+)]). We hypothesized that myogenic vasoconstriction and pressure-induced Ca(2+) influx would also be attenuated in vessels from chronically hypoxic (CH) rats. Mesenteric resistance arteries isolated from CH [barometric pressure (BP), 380 Torr for 48 h] or normoxic control (BP, 630 Torr) rats were cannulated and pressurized. VSM cell resting membrane potential was recorded at intraluminal pressures of 40-120 Torr under normoxic conditions. VSM cells in vessels from CH rats were hyperpolarized compared with control rats at all pressures. Inner diameter was maintained for vessels from control rats, whereas vessels from CH rats developed less tone as pressure was increased. Pressure-induced increases in vessel-wall [Ca(2+)] were also attenuated for arteries from CH rats. Endothelium removal restored myogenic constriction to vessels from CH rats and normalized VSM cell resting membrane potential and pressure-induced Ca(2+) responses to control levels. Myogenic constriction and pressure-induced vessel-wall [Ca(2+)] increases remained blunted in the presence of nitric oxide (NO) synthase inhibition for arteries from CH rats. We conclude that blunted myogenic reactivity after chronic hypoxia results from a non-NO, endothelium-dependent VSM cell hyperpolarizing influence.  相似文献   

14.
We tested the hypothesis that tumor necrosis factor-alpha (TNF-alpha) increases pulmonary vasoconstriction by decreases in nitric oxide- (NO) dependent vasodilation. Lungs were isolated from guinea pigs 18 h after intraperitoneal injection of either TNF-alpha (1.60 x 10(5) U/kg) or control. U-46619 (365 mM/min) caused increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. TNF-alpha augmented the U-46619-induced increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. Methylene blue (1 microM), which inhibits the activation of soluble guanylate cyclase by NO, had an effect similar to TNF-alpha on the pulmonary response to U-46619 alone but was not additive to the effect of TNF-alpha. NG-monomethyl-L-arginine (270 microM), an inhibitor of NO generation, also enhanced the response to U-46619. Lung effluent levels of nitrite, the oxidation product of NO, were reduced after treatment with either TNF-alpha or NG-monomethyl-L-arginine compared with U-46619 alone. In addition, lungs isolated after TNF-alpha treatment showed decreased vasodilation in response to acetylcholine (10(-8)-10(-5) M) compared with control; however, vasodilation in response to L-arginine (10 mM) and nitroprusside (10(-6.3) and 10(-6) M), agents that promote NO release, was not decreased in TNF-alpha-treated lungs. The data indicate that TNF-alpha induces an increase in vascular constriction in response to U-46619 and a decrease in vasodilation in response to acetylcholine. The mechanism for the TNF-alpha-induced alteration in pulmonary vascular reactivity may be decreased generation of NO.  相似文献   

15.
Soloviev  A.  Tishkin  S.  Gurney  A. 《Neurophysiology》2003,35(3-4):248-255
The endothelium is the main target in the vascular wall for ionizing radiation; an irradiation-induced impairment leads to the loss of endothelium-dependent vasodilation. Recent studies showed that gamma irradiation causes selective impairment of nitric oxide (NO)-mediated vasodilation, but little is known about the underlying mechanisms. The goal of our study was to identify mechanisms underlying the impairment of NO-mediated endothelium-dependent vasodilation after whole-body irradiation with a cobalt60 source. We compared vasodilation and NO release induced by acetylcholine (ACh), as well as relaxations induced by exogenous NO, in the thoracic aorta from healthy and irradiated rabbits. It was shown that despite the loss of relaxation the apparent release of NO induced by ACh and detected by chemiluminescence assay remained unaltered in irradiated tissue, as compared with that of healthy rabbits. At the same time, it was evident that while in healthy vessels relaxation increased with increasing NO concentration;, this relationship was lost in irradiated vessels. Endothelium-denuded aortic smooth muscles from irradiated rabbits retained the same sensitivity to NO gas solution as healthy denuded vessels. When non-denuded vascular tissues were used, irradiated aortas demonstrated an increased sensitivity, as compared with non-irradiated vascular tissue. α-Tocopherol acetate and phosphatidylcholine liposomes, when administered to rabbits 1 h after irradiation, effectively restored the NO-mediated endothelium-dependent relaxation and normalized the relationship between NO release and relaxation and also the sensitivity of the vessels to inhibition by Nω-nitro-L-arginine (L-NA). Taken together, these data allow us to hypothesize that inhibition of an EDRF/NO-dependent component of vascular relaxation in irradiated rabbits may be due to at least two possible reasons: (i) intensified inactivation of endothelium-derived NO by oxygen free radicals, and (ii) abnormalities in diffusion of NO in the irradiated endothelium and subendothelial layer. Both these effects may lead to a decrease in the bioavailability of NO.  相似文献   

16.
A deficiency of tetrahydrobiopterin (BH4), a NO-synthase co-factor, results in reactive oxygen species synthesis by NO-synthase. It leads to disturbances of endothelium-dependent vasorelaxation. We performed our study on the monocrotaline model of pulmonary hypertension. A decrease in endothelium-dependent relaxation was observed only in intrapulmonary arteries of monocrotaline-treated rats. A perfusion of BH4 (0.1 mol/liter) increased significantly endothelium-dependent dilation of hypertensive pulmonary arteries (p < 0.01). But BH4 did not influence the relaxation of systemic vessels and the dilation responses of pulmonary and systemic arteries of control rats. Measuring of superoxide by lucigenin-mediated chemiluminescence showed five-fold O2- production in intrapulmonary arteries of pulmonary hypertensive rats, that was activated by acetylcholine and inhibited by a nonselective NO-synthase blocker (L-NAME). However, activity of NO-synthase measured as [H3]arginine to [H3]citrulline conversion and assessed in pulmonary vessels and aortic tissue, did not differ in control and monocrotaline-treated groups. These data suggest, that there is a local deficiency of BH4--in pulmonary vessels, without significant changes of systemic circulation.  相似文献   

17.
We hypothesized that pregnancy modulates receptor-mediated responses of the uterine artery (UA) by altering G protein activation or coupling. Relaxation and contraction to NaF (0.5-11.5 mM), acetylcholine (10(-9)-10(-5) M), and bradykinin (10(-12)-3 x 10(-5) M) were measured in isolated UA of pregnant and nonpregnant guinea pigs. Responses were measured in the presence and absence of either cholera toxin (2 microg/ml) or pertussis toxin (Galpha(s) and Galpha(i) inhibitors, respectively). NaF relaxation was endothelium dependent and nitro-L-arginine sensitive (a nitric oxide synthase inhibitor). Relaxation to NaF, acetylcholine, and bradykinin were potentiated by pregnancy. Cholera but not pertussis toxin increased relaxation to acetylcholine and bradykinin in UA from nonpregnant animals, had no effect in UA from pregnant animals, and abolished the pregnancy-induced differences in acetylcholine relaxation. Cholera toxin potentiated the bradykinin-induced contraction of UA of both pregnant and nonpregnant animals, whereas pertussis toxin inhibited contraction of UA from pregnant animals only. Therefore, pregnancy may enhance agonist-stimulated endothelium-dependent relaxation and bradykinin-induced contraction of UA by inhibiting GTPase activity or enhancing Galpha(s) but not Galpha(i) activation in pregnant animals. Thus the diverse effects of pregnancy on UA responsiveness may result from hormonal modulation of G proteins coupled to their specific receptors.  相似文献   

18.
Moon MK  Kang DG  Lee JK  Kim JS  Lee HS 《Life sciences》2006,78(14):1550-1557
While conducting an in vitro screen of various medicinal plant extracts, an aqueous extract of rhubarb (Rheum undulatum L, AR) was found to exhibit a distinct vasorelaxant activity. AR induced a concentration-dependent relaxation of the phenylephrine-precontracted aorta. This effect disappeared with the removal of functional endothelium. Pretreatment of the aortic tissues with N(G)-nitro-L-arginine methyl ester (L-NAME), methylene blue, or 1H-[1,2,4]-oxadiazole-[4,3-alpha]-quinoxalin-1-one (ODQ) inhibited the relaxation induced by AR. Incubation of human umbilical vein endothelial cells (HUVECs) with AR increased the production of cGMP in a dose-dependent manner, but this effect was blocked by pretreatment with L-NAME and ODQ, respectively. AR treatment attenuated TNF-alpha-induced NF-kappaB p65 translocation in HUVECs in a dose-dependent manner. In addition, AR suppressed the expression levels of adhesion molecules including ICAM-1 and VCAM-1 induced by TNF-alpha in HUVECs. TNF-alpha-induced MCP-1 expression was also attenuated by the addition of AR. This attenuation was blocked by pretreatment with either L-NAME or ODQ. AR treatment inhibited cellular adhesion of U937 cells onto HUVECs induced by TNF-alpha. Taken together, the present study suggests that AR dilates vascular smooth muscle and suppresses the vascular inflammatory process via endothelium-dependent NO/cGMP signaling.  相似文献   

19.
Gender differences in vascular reactivity have been suggested; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the gender differences in vascular reactivity reflect gender-related, possibly estrogen-mediated, distinctions in the expression and activity of specific protein kinase C (PKC) isoforms in vascular smooth muscle. Aortic strips were isolated from intact and gonadectomized male and female Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Isometric contraction was measured in endothelium-denuded aortic strips. PKC activity was measured in the cytosolic and particulate fractions, and the amount of PKC was measured using Western blots and isoform-specific anti-PKC antibodies. In intact male WKY rats, phenylephrine (Phe, 10(-5) M) and phorbol 12,13-dibutyrate (PDBu, 10(-6) M) stimulated contraction to 0.37 +/- 0.02 and 0.42 +/- 0.02 g/mg tissue wt, respectively. The basal particulate/cytosolic PKC activity ratio was 0.86 +/- 0.06, and Western blots revealed alpha-, delta-, and zeta-PKC isoforms. Phe and PDBu increased PKC activity and caused significant translocation of alpha- and delta-PKC from the cytosolic to particulate fraction. In intact female WKY rats, basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe- and PDBu-induced contraction, and PKC activity and translocation of alpha- and delta-PKC were significantly reduced compared with intact male WKY rats. The basal PKC activity, the amount of alpha-, delta-, and zeta-PKC, the Phe and PDBu contraction, and PKC activity and alpha- and delta-PKC translocation were greater in SHR than WKY rats. The reduction in Phe and PDBu contraction and PKC activity in intact females compared with intact males was greater in SHR ( approximately 30%) than WKY rats ( approximately 20%). Phe and PDBu contraction and PKC activity were not significantly different between castrated males and intact males but were greater in ovariectomized (OVX) females than intact females. Treatment of OVX females or castrated males with 17 beta-estradiol, but not 17 alpha-estradiol, subcutaneous implants caused significant reduction in Phe and PDBu contraction and PKC activity that was greater in SHR than WKY rats. Phe and PDBu contraction and PKC activity in OVX females or castrated males treated with 17 beta-estradiol plus the estrogen receptor antagonist ICI-182,780 were not significantly different from untreated OVX females or castrated males. Thus a gender-related reduction in vascular smooth muscle contraction in female WKY rats with intact gonads compared with males is associated with reduction in the expression and activity of vascular alpha-, delta-, and zeta-PKC. The gender differences in vascular smooth muscle contraction and PKC activity are augmented in the SHR and are possibly mediated by estrogen.  相似文献   

20.
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号