首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hypothesis was tested that cardiac output (CO) and stroke volume (SV) are increased by a moderate physiological elevation in sodium intake with a more pronounced effect in the ambulatory upright seated than supine position. Fourteen healthy males were investigated during ambulatory and controlled laboratory conditions at the end of two consecutive 5-day periods with sodium intakes of 70 (low) and 250 (high) mmol/24 h or vice versa, respectively. Comparing high and low sodium intake, plasma volume and plasma protein concentrations were 9 and 8% higher in the seated and the supine position, respectively. When seated during laboratory conditions, CO was 5.3 +/- 0.2 l/min on the high sodium intake vs. 4.8 +/- 0.2 l/min on the low (P < 0.05), and SV was 81 +/- 3 vs. 68 +/- 3 ml (P < 0.05). In the supine position, SV was 107 +/- 3 ml on the high vs. 99 +/- 3 ml (P < 0.05) on the low sodium intake, while CO remained unchanged. The difference in CO and SV induced by the change in sodium intake was significantly higher in the seated than in the supine position (P < 0.05). During upright ambulatory conditions, CO was 5.9 +/- 0.2 l/min during the high and 5.2 +/- 0.2 l/min during the low sodium intake (P < 0.05), and SV was 84 +/- 3 and 69 +/- 3 ml (P < 0.05), respectively. Mean arterial pressure was unchanged by the variations in sodium intake. In conclusion, increments in sodium intake within the normal physiological range increase CO and SV and more so in the seated vs. the supine position. These changes are readily detectable during upright, ambulatory conditions. The results indicate that the higher SV and CO could constitute an arterial baroreflex stimulus for the augmented renal sodium excretion.  相似文献   

2.
ECG-triggered computed tomography (CT) was used during passage of iodinated contrast to determine regional pulmonary blood flow (PBF) in anesthetized prone/supine dogs. PBF was evaluated as a function of height within the lung (supine and prone) as a function of various normalization methods: raw unit volume data (PBFraw) or PBF normalized to regional fraction air (PBFair), fractional non-air (PBFgm), or relative number of alveoli (PBFalv). The coefficient of variation of PBFraw, PBFair, PBFalv, and PBFgm ranged between 30 and 50% in both lungs and both body postures. The position of maximal flow along the height of the lung (MFP) was calculated for PBFraw, PBFair, PBFalv, and PBFgm. Only PBFgm showed a significantly different MFP height supine vs. prone (whole lung: 2.60 +/- 1.08 cm supine vs. 5.08 +/- 1.61 cm prone, P < 0.01). Mean slopes (ml/min/gm water content/cm) of PBFgm were steeper supine vs. prone in the right (RL) but not left lung (LL) (RL: -0.65 +/- 0.29 supine vs. -0.26 +/- 0.25 prone, P < 0.02; LL: -0.47 +/- 0.21 supine vs. -0.32 +/- 0.26 prone, P > 0.10). Mean slopes of PBFgm vs. vertical lung height were not different prone vs. supine above this vertical height of MFP (VMFP), but PBFgm slopes were steeper in the supine position below the VMFP in the RL. We conclude that PBFgm distribution was posture dependent in RL but not LL. Support of the heart may play a role. We demonstrate that normalization factors can lead to differing attributions of gravitational effects on PBF heterogeneity.  相似文献   

3.
Body fluid homeostasis was investigated during chronic bed rest (BR) and compared with that of acute supine conditions. The hypothesis was tested that 6 degrees head-down BR leads to hypovolemia, which activates antinatriuretic mechanisms so that the renal responses to standardized saline loading are attenuated. Isotonic (20 ml/kg body wt) and hypertonic (2.5%, 7.2 ml/kg body wt) infusions were performed in eight subjects over 20 min following 7 and 10 days, respectively, of BR during constant sodium intake (200 meq/day). BR decreased body weight (83.0 +/- 4.8 to 81.8 +/- 4.4 kg) and increased plasma osmolality (285.9 +/- 0.6 to 288.5 +/- 0.9 mosmol/kgH(2)O, P < 0.05). Plasma ANG II doubled (4.2 +/- 1.2 to 8.8 +/- 1.8 pg/ml), whereas other endocrine variables decreased: plasma atrial natriuretic peptide (42 +/- 3 to 24 +/- 3 pg/ml), urinary urodilatin excretion rate (4.5 +/- 0.3 to 3.2 +/- 0.1 pg/min), and plasma vasopressin (1.7 +/- 0.3 to 0.8 +/- 0.2 pg/ml, P < 0.05). During BR, the natriuretic response to the isotonic saline infusion was augmented (39 +/- 8 vs. 18 +/- 6 meq sodium/350 min), whereas the response to hypertonic saline was unaltered (32 +/- 8 vs. 29 +/- 5 meq/350 min, P < 0.05). In conclusion, BR elicits antinatriuretic endocrine signals, but it does not attenuate the renal natriuretic response to saline stimuli in men; on the contrary, the response to isotonic saline is augmented.  相似文献   

4.
To determine the cause of the difference in gas exchange between the prone and supine postures in dogs, gas exchange was assessed by the multiple inert gas elimination technique (MIGET) and distribution of pulmonary blood flow was determined using radioactively labeled microspheres in seven anesthetized paralyzed dogs. Each animal was studied in the prone and supine positions in random order while tidal volume and respiratory frequency were kept constant with mechanical ventilation. Mean arterial PO2 was significantly lower (P less than 0.01) in the supine [96 +/- 10 (SD) Torr] than in the prone (107 +/- 6 Torr) position, whereas arterial PCO2 was constant (38 Torr). The distribution of blood flow (Q) vs. ventilation-to-perfusion ratio obtained from MIGET was significantly wider (P less than 0.01) in the supine [ln SD(Q) = 0.75 +/- 0.26] than in the prone position [ln SD (Q) = 0.34 +/- 0.05]. Right-to-left pulmonary shunting was not significantly altered. The distribution of microspheres was more heterogeneous in the supine than in the prone position. The larger heterogeneity was due in part to dorsal-to-ventral gradients in Q in the supine position that were not present in the prone position (P less than 0.01). The decreased efficiency of oxygenation in the supine posture is caused by an increased ventilation-to-perfusion mismatch that accompanies an increase in the heterogeneity of Q distribution.  相似文献   

5.
To determine whether uremia changes lung vascular permeability, we measured the flow of lymph and proteins from the lungs of acutely uremic sheep. Acute renal failure was induced by either bilateral nephrectomy or by reinfusing urine. Both models of renal failure increased the plasma creatinine from 0.8 +/- 0.3 to 11 +/- 1 mg/dl in 3 days but caused no significant change in the flow of lymph from the lungs. To determine whether uremia increased the protein clearance response to elevated pulmonary microvascular pressures, we inflated a balloon in the left atrium for 2 h before and 3 days after inducing acute renal failure. In seven sheep, before removing the kidneys, the 20 cmH2O elevation of left atrial pressure increased the protein clearance 3.9 +/- 3.0 ml/h (from 9.5 +/- 4.9 to 13.4 +/- 5.4 ml/h). Three days after the bilateral nephrectomy the same increase in left atrial pressure increased the protein clearance 6.4 +/- 3.6 ml/h (from 6.1 +/- 2.1 to 12.5 +/- 5.2 ml/h), which was a significantly larger increase than that measured before the nephrectomy (P less than 0.05). Sham nephrectomy in seven sheep caused the protein clearance response to the elevated left atrial pressure to fall from 4.7 +/- 1.9 ml/h before the sham nephrectomy to 2.6 +/- 1.4 ml/h 3 days later (P less than 0.05). Uremia due to reinfusion of urine in five sheep did not affect the protein clearance response to elevations in left atrial pressure. Neither model of acute uremia increased the postmortem extravascular lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

7.
Pregnancy is associated with profound changes in renal hemodynamics and electrolyte handling. Relaxin, a hormone secreted by the corpus luteum, has been shown to induce pregnancy-like increases in renal blood flow and glomerular filtration rate (GFR) and alter osmoregulation in nonpregnant female and male rats. However, its effects on renal electrolyte handling are unknown. Accordingly, the influence of short (2 h)- and long-term (7 day) infusion of relaxin on renal function was determined in the male rat. Short term infusion of recombinant human relaxin (rhRLX) at 4 microg.h(-1).100 g body wt(-1) induced a significant increase in effective renal blood flow (ERBF) within 45 min, which peaked at 2 h of infusion (vehicle, n = 6, 2.1 +/- 0.4 vs. rhRLX, n = 7, 8.1 +/- 1.1 ml.min(-1).100 g body wt(-1), P < 0.01). GFR and urinary excretion of electrolytes were unaffected. After a 7-day infusion of rhRLX at 4 microg/h, ERBF (1.4 +/- 0.2 vs. 2.5 +/- 0.4 ml.min(-1).100 g body wt(-1), P < 0.05), urine flow rate (3.1 +/- 0.3 vs. 4.3 +/- 0.4 microl.min(-1).100 g body wt(-1), P < 0.05) and urinary sodium excretion (0.8 +/- 0.1 vs. 1.2 +/- 0.1 micromol.min(-1).100 g body wt(-1), P < 0.05) were significantly higher; plasma osmolality and sodium concentrations were lower in rhRLX-treated rats. These data show that long-term relaxin infusion induces a natriuresis and diuresis in the male rat. The mechanisms involved are unclear, but they do not involve changes in plasma aldosterone or atrial natriuretic peptide concentrations.  相似文献   

8.
Results from our laboratory have indicated that, compared with those of the 1-G supine (Sup) position, left atrial diameter (LAD) and transmural central venous pressure increase in humans during weightlessness (0 G) induced by parabolic flights (R. Videbaek and P. Norsk. J. Appl. Physiol. 83: 1862-1866, 1997). Therefore, because cardiopulmonary low-pressure receptors are stimulated during 0 G, the hypothesis was tested that mean arterial pressure (MAP) in humans decreases during 0 G to values below those of the 1-G Sup condition. When the subjects were Sup, 0 G induced a decrease in MAP from 93 +/- 4 to 88 +/- 4 mmHg (P < 0.001), and LAD increased from 30 +/- 1 to 33 +/- 1 mm (P < 0.001). In the seated position, MAP also decreased from 93 +/- 6 to 87 +/- 5 mmHg (P < 0.01) and LAD increased from 28 +/- 1 to 32 +/- 1 mm (P < 0.001). During 1-G conditions with subjects in the horizontal left lateral position, LAD increased compared with that of Sup (P < 0.001) with no further effects of 0 G. In conclusion, MAP decreases during short-term weightlessness to below that of 1-G Sup simultaneously with an increase in LAD. Therefore, distension of the heart and associated central vessels during 0 G might induce the hypotensive effects through peripheral vasodilatation. Furthermore, the left lateral position in humans could constitute a simulation model of weightlessness.  相似文献   

9.
Urocortin 1 (Ucn1) may be involved in the pathophysiology of heart failure (HF), but the impact of Ucn1 administration on progression of the disease is unknown. The aim of this study was to investigate the effects of Ucn1 in sheep from the onset of cardiac overload and during the subsequent development of HF. Eight sheep underwent two 4-day periods of HF induction by rapid left ventricular pacing (225 beats/min) in conjunction with continuous infusions of Ucn1 (0.1 microg.kg(-1).h(-1) iv) and a vehicle control (0.9% saline). Compared with control, Ucn1 attenuated the pacing-induced decline in cardiac output (2.43 +/- 0.46 vs. 3.70 +/- 0.89 l/min on day 4, P < 0.01) and increases in left atrial pressure (24.9 +/- 1.0 vs. 11.9 +/- 1.1 mmHg, P < 0.001) and peripheral resistance (38.7 +/- 9.4 vs. 25.2 +/- 6.1 mmHg.l(-1).min, P < 0.001). Ucn1 wholly prevented increases in plasma renin activity (4.02 +/- 1.17 vs. 0.87 +/- 0.1 nmol.l(-1).h(-1), P < 0.001), aldosterone (1,313 +/- 324 vs. 413 +/- 174 pmol/l, P < 0.001), endothelin-1 (3.8 +/- 0.5 vs. 2.0 +/- 0.1 pmol/l, P < 0.001), and vasopressin (10.8 +/- 4.1 vs. 1.8 +/- 0.2 pmol/l, P < 0.05) during pacing alone and blunted the progressive increases in plasma epinephrine (2,132 +/- 697 vs. 1,250 +/- 264 pmol/l, P < 0.05), norepinephrine (3.61 +/- 0.73 vs. 2.07 +/- 0.52 nmol/l, P < 0.05), and atrial (P < 0.05) and brain (P < 0.01) natriuretic peptide levels. Ucn1 administration also maintained urine sodium excretion (0.75 +/- 0.34 vs. 1.59 +/- 0.50 mmol/h on day 4, P < 0.05) and suppressed pacing-induced declines in creatinine clearance (P < 0.05). These findings indicate that Ucn1 treatment from the onset of cardiac overload has the ability to repress the ensuing hemodynamic and renal deterioration and concomitant adverse neurohumoral activation, thereby delaying the development of overt HF. These data strongly support a use for Ucn1 as a therapeutic option early in the course of the disease.  相似文献   

10.
The aim of this study was to investigate the contribution of direct right-to-left ventricular interaction to left ventricular filling and stroke volume in 46 patients with pulmonary arterial hypertension (PAH) and 18 control subjects. Stroke volume, right and left ventricular volumes, left ventricular filling rate, and interventricular septum curvature were measured by magnetic resonance imaging and left atrial filling by transesophageal echocardiography. Stroke volume, left ventricular end-diastolic volume, and left ventricular peak filling rate were decreased in PAH patients compared with control subjects: 28 +/- 13 vs. 41 +/- 10 ml/m(2) (P < 0.001), 46 +/- 14 vs. 61 +/- 14 ml/m(2) (P < 0.001), and 216 +/- 90 vs. 541 +/- 248 ml/s (P < 0.001), respectively. Among PAH patients, stroke volume did not correlate to right ventricular end-diastolic volume or mean pulmonary arterial pressure but did correlate to left ventricular end-diastolic volume (r = 0.62, P < 0.001). Leftward interventricular septum curvature was correlated to left ventricular filling rate (r = 0.64, P < 0.001) and left ventricular end-diastolic volume (r = 0.65, P < 0.001). In contrast, left atrial filling was normal and not correlated to left ventricular end-diastolic volume. In PAH patients, ventricular interaction mediated by the interventricular septum impairs left ventricular filling, contributing to decreased stroke volume.  相似文献   

11.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

12.
Obstructive sleep apnea (OSA) increases cardiovascular morbidity and mortality. We have reported that chronic intermittent hypoxia (CIH), a direct consequence during OSA, leads to left ventricular (LV) remodeling and dysfunction in rats. The present study is to determine LV myocardial cellular injury that is possibly associated with LV global dysfunction. Fifty-six rats were exposed either to CIH (nadir O(2) 4-5%) or sham (handled normoxic controls, HC), 8 h/day for 6 wk. At the end of the exposure, we studied LV global function by cardiac catheterization, and LV myocardial cellular injury by in vitro analyses. Compared with HC, CIH animals demonstrated elevations in mean arterial pressure and LV end-diastolic pressure, but reductions in cardiac output (CIH 141.3 +/- 33.1 vs. HC 184.4 +/- 21.2 ml x min(-1) x kg(-1), P < 0.01), maximal rate of LV pressure rise in systole (+dP/dt), and maximal rate of LV pressure fall in diastole (-dP/dt). CIH led to significant cell injury in the left myocardium, including elevated LV myocyte size, measured by cell surface area (CIH 3,564 +/- 354 vs. HC 2,628 +/- 242 microm(2), P < 0.05) and cell length (CIH 148 +/- 23 vs. HC 115 +/- 16 microm, P < 0.05), elevated terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-stained positive cell number (CIH 98 +/- 45 vs. HC 15 +/- 13, P < 0.01), elevated caspase-3 activity (906 +/- 249 vs. 2,275 +/- 1,169 pmol x min(-1) x mg(-1), P < 0.05), and elevated expression of several remodeling gene markers, including c-fos, atrial natriuretic peptide, beta-myosin heavy chain, and myosin light chain-2. However, there was no difference between groups in sarcomere contractility of isolated LV myocytes, or in LV collagen deposition on trichrome-stained slices. In conclusion, CIH-mediated LV global dysfunction is associated with myocyte hypertrophy and apoptosis at the cellular level.  相似文献   

13.
In 11 healthy subjects (8 males and 3 females, age 21-59 yr) left ventricular end-diastolic (LVEDV) and end-systolic (LVESV) volumes were measured in the supine position by isotope cardiography at rest and during two submaximal one-legged exercise loads before and 1 h after acute plasma expansion (PE) by use of a 6% dextran solution (500-750 ml). After PE, blood volume increased from 5.22 +/- 0.92 to 5.71 +/- 1.02 (SD) liters (P < 0.01). At rest, cardiac output increased 30% (5.3 +/- 1.0 to 6.9 +/- 1.6 l/min; P < 0.01), stroke volume increased from 90 +/- 20 to 100 +/- 28 ml (P < 0.05), and LVEDV increased from 134 +/- 29 to 142 +/- 40 ml (NS). LVESV was unchanged (44 +/- 11 and 42 +/- 14 ml). Heart rate rose from 60 +/- 7 to 71 +/- 10 beats/min (P < 0.01). The cardiac preload [central venous pressure (CVP)] was insignificantly elevated (4.9 +/- 2.1 and 5.3 +/- 3.0 mmHg); systemic vascular resistance and arterial pressures were significantly reduced (mean pressure fell from 91 +/- 11 to 85 +/- 11 mmHg, P < 0.01). Left ventricular peak filling and peak ejection rates both increased (19 and 14%, respectively; P < 0.05). During exercise, cardiac output remained elevated after PE compared with the control situation, predominantly due to a 10- to 14-ml rise in stroke volume caused by an increased LVEDV, whereas LVESV was unchanged. CVP increased after PE by 2.1 and 3.0 mmHg, respectively (P < 0.05).2+ remained unchanged during exercise compared with rest after PE in  相似文献   

14.
Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. Measurements were made in both the prone and supine posture at functional residual capacity. Data were acquired in three nonoverlapping 15-mm sagittal slices covering most of the right lung: central, middle, and lateral, which were further divided into vertical zones: anterior, intermediate, and posterior. The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm(3) anterior, -0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 +/- 3.6 ml.min(-1).g(-1) prone, 5.1 +/- 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.  相似文献   

15.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

16.
During an antiorthostatic posture change, left atrial (LA) diameter and arterial pulse pressure (PP) increase, and plasma arginine vasopressin (AVP) is suppressed. By comparing the effects of a 15-min posture change from seated to supine with those of 15-min seated negative pressure breathing in eight healthy males, we tested the hypothesis that with similar increases in LA diameter, suppression of AVP release is dependent on the degree of increase in PP. LA diameter increased similarly during the posture change and negative pressure breathing (-9 to -24 mmHg) from between 30 and 31 +/- 1 to 34 +/- 1 mm (P < 0.05). The increase in PP from 38 +/- 2 to 44 +/- 2 mmHg (P < 0.05) was sustained during the posture change but only increased during the initial 5 min of negative pressure breathing from 36 +/- 3 to 42 +/- 3 mmHg (P < 0.05). Aortic transmural pressure decreased during the posture change and increased during negative pressure breathing. Plasma AVP was suppressed to a lower value during the posture change (from 1.5 +/- 0.3 to 1.2 +/- 0.2 pg/ml, P < 0.05) than during negative pressure breathing (from 1.5 +/- 0.3 to 1.4 +/- 0.3 pg/ml). Plasma norepinephrine was decreased similarly during the posture change and negative pressure breathing compared with seated control. In conclusion, the results are in compliance with the hypothesis that during maneuvers with similar cardiac distension, suppression of AVP release is dependent on the increase in PP and, furthermore, probably unaffected by static aortic baroreceptor stimulation.  相似文献   

17.
Renal impairment is common in preterm infants, often after exposure to hypoxia/asphyxia or other circulatory disturbances. We examined the hypothesis that this association is mediated by reduced renal blood flow (RBF), using a model of asphyxia induced by complete umbilical cord occlusion for 25 min (n = 13) or sham occlusion (n = 6) in chronically instrumented preterm fetal sheep (104 days, term is 147 days). During asphyxia there was a significant fall in RBF and urine output (UO). After asphyxia, RBF transiently recovered, followed within 30 min by a secondary period of hypoperfusion (P < 0.05). This was mediated by increased renal vascular resistance (RVR, P < 0.05); arterial blood pressure was mildly increased in the first 24 h (P < 0.05). RBF relatively normalized between 3 and 24 h, but hypoperfusion developed again from 24 to 60 h (P < 0.05, analysis of covariance). UO significantly increased to a peak of 249% of baseline between 3 and 12 h (P < 0.05), with increased fractional excretion of sodium, peak 10.5 +/- 1.4 vs. 2.6 +/- 0.6% (P < 0.001). Creatinine clearance returned to normal after 2 h; there was a transient reduction at 48 h to 0.32 +/- 0.02 ml.min(-1).g(-1) (vs. 0.45 +/- 0.04, P < 0.05) corresponding with the time of maximal depression of RBF. No renal injury was seen on histological examination at 72 h. In conclusion, severe asphyxia in the preterm fetus was associated with evolving renal tubular dysfunction, as shown by transient polyuria and natriuresis. Despite a prolonged increase in RVR, there was only a modest effect on glomerular function.  相似文献   

18.
To examine the development of pulmonary edema during experimental renal dysfunction, left atrial pressure was altered in 14 mongrel dogs divided into two groups. Group 1 was composed of seven control animals, and Group 2 was composed of seven animals with surgically induced renal failure (1 week of bilateral ureteral ligation). Data were obtained at two levels of matched transmural pulmonary vascular pressure (defined as mean left atrial pressure less serum protein osmotic pressure). In the animals with renal dysfunction, extravascular lung water (EVLW) (thermal-green dye technique) was higher at moderately (-1 to -2 mm Hg) and severely elevated (11 to 12 mm Hg) vascular driving pressures (11.5 +/- 1.2 cc/kg vs 10.6 +/- 0.8 cc/kg and 14.8 +/- 1.3 cc/kg vs 13.0 +/- 1.9 cc/kg, respectively, both P less than 0.05 vs control). Because protein osmotic pressure was lower in the renal failure group (15.0 +/- 1.8 mm Hg vs 18.4 +/- 1.4 mm Hg, P less than 0.05), greater accumulations of extravascular lung water occurred at lower levels of left atrial pressure (14.2 +/- 1.4 mm Hg vs 17.1 +/- 1.2 mm Hg, P less than 0.05; 26.8 +/- 2.6 mm Hg vs 29.5 +/- 2.3 mm Hg, P less than 0.01). In addition, when the ratio of EVLW/PBV (pulmonary blood volume) was examined in both groups at each stage of the experiment, the ratio was greater in the Group 2 animals at each elevated pressure, suggesting increased permeability with renal dysfunction. In conclusion, pulmonary edema formation occurs at lower left atrial pressures in the setting of sustained renal dysfunction, this phenomenon can be partially explained by lower protein osmotic pressure though altered pulmonary microvascular permeability may contribute to edema formation.  相似文献   

19.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

20.
After an acute bout of exercise, there is an unexplained elevation in systemic vascular conductance that is not completely offset by an increase in cardiac output, resulting in a postexercise hypotension. The contributions of the splanchnic and renal circulations are examined in a companion paper (Pricher MP, Holowatz LA, Williams JT, Lockwood JM, and Halliwill JR. J Appl Physiol 97: 2065-2070, 2004). The purpose of this study was to determine the contribution of the cutaneous circulation in postexercise hypotension under thermoneutral conditions (approximately 23 degrees C). Arterial blood pressure was measured via an automated sphygmomanometer, internal temperature was measured via an ingestible pill, and skin temperature was measured with eight thermocouples. Red blood cell flux (laser-Doppler flowmetry) was monitored at four skin sites (chest, forearm, thigh, and leg), and cutaneous vascular conductance (CVC) was calculated (red blood cell flux/mean arterial pressure) and scaled as percent maximal CVC (local heating to 43 degrees C). Ten subjects [6 men and 4 women; age 23 +/- 1 yr; peak O(2) uptake (Vo(2 peak)) 45.8 +/- 2.0 ml.kg(-1).min(-1)] volunteered for this study. After supine rest (30 min), subjects exercised on a bicycle ergometer for 1 h at 60% of their Vo(2 peak) and were then positioned supine for 90 min. Exercise elicited a postexercise hypotension reaching a nadir at 46.0 +/- 4.5 min postexercise (77 +/- 1 vs. 82 +/- 2 mmHg preexercise; P < 0.05). Internal temperature increased (38.0 +/- 0.1 vs. 36.7 +/- 0.1 degrees C preexercise; P < 0.05), remaining elevated at 90 min postexercise (36.9 +/- 0.1 degrees C vs. preexercise; P < 0.05). CVC at all four skin sites was elevated by the exercise bout (P < 0.05), returning to preexercise values within 50 min postexercise (P > 0.05). Therefore, although transient changes in CVC occur postexercise, they do not appear to play an obligatory role in mediating postexercise hypotension under thermoneutral conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号